Skip to main content
Log in

Molecular basis of polymorphic drug metabolism

  • Review
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Genetic polymorphisms with functional effects occur in many of the genes encoding drug metabolizing enzymes and are an important cause of adverse drug reations. Recent advances in the understanding of the molecular genetics of drug-metabolizing enzymes, particularly the cytochromes P450, has enabled the molecular basis of several polymorphisms to be elucidated and genotyping assays using the polymerase chain reaction to be developed. Polymorphisms in this category include those in the cytochrome P450 genes CYP2D6, CYP2C19, CYP2A6, CYP2C9 and CYP2E1, the glutathione S-transferase genes GSTM1 and GSTT1 and the N-acetyltransferase gene NAT2. The molecular basis and impotance to drug metabolism of the various polymorphisms as well as evidence for the existence of polymorphisms in other genes encoding drug-metabolizing enzymes such as the UDP-glucuronosyltransferases, the sulphotransferases and the methyltransferases are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

DHEA ST :

Dehydroepiandrosterone sulphotransferase

EST :

Oestrogen sulphotransferase

TL ST :

Thermolabile sulphotransferase

TS ST :

Thermostable sulphotransferase

References

  1. Mahgoub A, Idle JR, Dring LG, Lancaster R, Smith RL (1977) Polymorphic hydroxylation of debrisoquine in man. Lancet 11:584–586

    Google Scholar 

  2. Eichelbaum M, Spannbrucker N, Steincke B, Dengler HJ (1979) Defective N-oxidation of sparteine in man: a new pharmacogenetic defect. Eur J Clin Pharmacol 17:153–155

    Google Scholar 

  3. Inaba T, Otton SV, Kalow W (1980) Deficient metabolism of debrisoquine and sparteine. Clin Pharmacol Ther 27:547–549

    Google Scholar 

  4. Dayer P, Gasser R, Gut J, Kronbach T, Robertz GM, Eichelbaum M, Meyer UA (1984) Characterization of a common genetic defect of cytochrome P450 function (debrisoquinesparteine type polymorphism). Biochem Biophys Res Commun 125:374–380

    Google Scholar 

  5. Cholerton S, Daly AK, Idle JR (1992) The role of individual human cytochromes P450 in drug metabolism and clinical response. Trends Pharmacol Sci 13:434–438

    Google Scholar 

  6. Gonzalez FJ, Idle JR (1994) Pharmacogenetic phenotyping and genotyping. Present status and future potential. Clin Pharmacokinet 26:59–70

    Google Scholar 

  7. Evans DAP (1993) Genetic factors in drug therapy. Clinical and molecular pharmacogenetics. Cambridge University Press, Cambridge

    Google Scholar 

  8. Daly AK, Cholerton S, Gregory W, Idle JR (1993) Metabolic polymorphisms. Pharmacol Ther 57:129–160

    Article  MathSciNet  Google Scholar 

  9. Hall MCS, Gregory WL, Idle JR (1994) Pharmacogenetics: can the therapeutic key objective be accomplished? In: Seymour CA, Weetman RA (eds) Horizons in medicine, vol 5. Blackwell, London, pp 79–91

    Google Scholar 

  10. Kimura S, Umeno M, Skoda RC, Meyer UA, Gonzalez FJ (1989) The human debrisoquine 4-hydroxylase (CYP2D) locus: sequence and identification of a polymorphic CYP2D6 gene, a related gene, and a pseudogene. Am J Hum Genet 45:889–905

    Google Scholar 

  11. Daly AK, Armstrong M, Monkman SC, Idle ME, Idle JR (1991) The genetic and metabolic criteria for the assignment of debrisoquine hydroxylation (cytochrome P450IID6) phenotypes. Pharmacogenetics 1:33–41

    Google Scholar 

  12. Broly F, Gaedigk A, Heim M, Eichelbaum M, Morike K, Meyer UA (1991) Debrisoquine/sparteine hydroxylation genotype and phenotype: analysis of common mutations and alleles of CYP2D6 in a European population. DNA Cell Biol 10:545–558

    Google Scholar 

  13. Saxena R, Shaw GL, Relling MV, Frame JN, Moir DT, Evans WE, Caporaso N, Weiffenbach B (1994) Identification of a new variant CYP2D6 single base pair deletion in exon 3 and its association with the poor metabolizer phenotype. Hum Mol Genet 3:923–926

    Google Scholar 

  14. Evert B, Griese E-U, Eichelbaum M (1994) A missense mutation in exon 6 of the CYP2D6 gene leading to a histidine to proline exchange is associated with the poor metabolizer phenotype of sparteine. Naunyn-Schmiedebergs Arch Pharmacol 350:434–439

    Google Scholar 

  15. Yokota H, Tamura S, Furuya H, Kimura S, Watanbe M, Kanazawa I, Kondo I, Gonzalez FJ (1993) Evidence for a new variant allele CYP2D6J in a Japanese population associated with lower in vivo rates of sparteine metabolism. Pharmacogenetics 3:256–263

    Google Scholar 

  16. Wang S-L, Huang J-D, Lai M-D, Liu B-H, Lai M-L (1993) Molecular basis of genetic variation in debrisoquin hydroxylation in Chinese subjects: polymorphism in RFLP and DNA sequence of CYP2D6. Clin Pharmacol Ther 53:410–418

    Google Scholar 

  17. Johansson I, Oscarson M, Yue Q-Y, Bertilsson L, Sjoqvist F, Ingelman-Sundberg M (1994) Genetic analysis of the Chinese cytochrome P4502D locus: characterization of variant CYP2D6 genes present in subjects with diminished capacity for debrisoquine hydroxyalation. Mol Pharmacol 46:452–259

    CAS  PubMed  Google Scholar 

  18. Kagimoto M, Heim M, Kagimoto K, Zeugin T, Meyer UA (1990) Multiple mutations of the human cytochrome P450IID6 gene (CYP2D6) in poor metabolisers of debrisoquine. J Biol Chem 265:17209–17214

    Google Scholar 

  19. Evans WE, Relling MV, Rahman A, McLeod HL, Scott EP, Lin J-S (1993) Genetic basis for a lower prevalence of deficient CYP2D6 oxidative drug metabolism phenotypes in black Americans. J Clin Invest 91:2150–2154

    Google Scholar 

  20. Bertilsson L, Dahl M-L, Sjoqvist F, Aberg-Wistedt A, Humble M, Johansson I, Lundqvist E, Ingelman-Sundberg M (1993) Molecular basis for rational megaprescribing in ultrarapid hydroxylators of debrisoquine. Lancet 341:63

    Google Scholar 

  21. Johansson I, Lundqvist E, Bertilsson L, Dahl M-L, Sjoqvist F, Ingelman-Sundberg M (1993) Inherited amplification of an active gene in the cytochrome P450 CYP2D locus as a cause of ultrarapid metabolism of debrisoquine. Proc Natl Acad Sci USA 90:11825–11829

    CAS  PubMed  Google Scholar 

  22. Agundez JAG, Ledesma MC, Ladero JM, Benitez J (1995) Prevalence of CYP2D6 gene duplication and its repercussion on the oxidative phenotype in a white population. Clin Pharmacol Ther 57:265–269

    CAS  PubMed  Google Scholar 

  23. Shah RR, Oates NS, Idle JR, Smith RL, Lockhart JDF (1982) Impaired oxidation of debrisoquine in patients with perhexilene neuropathy. BMJ 284:295–299

    Google Scholar 

  24. Sindrup SH, Brosen K, Bjerring K, Arendt-Nielsen L, Larsen V, Angelo HR, Gram LF (1991) Codeine increases pain thresholds to copper vapor laser stimuli in extensive but not poor metabolizers of sparteine. Clin Pharmacol Ther 49:686–693

    Google Scholar 

  25. Persson K, Sjostrom S, Sigurdardottir I, Molnar V, Hammar-lundudenaes M, Rane A (1995) Patient-controlled analgesia (PCA) with codeine for postoperative pain relief in 10 extensive metabolizers and one poor metabolizer of dextromethorphan. Br J Clin Pharmacol 39:182–186

    Google Scholar 

  26. Siddoway LA, Thompson KA, McAllister CB, Wang T, Wilkinson GR, Roden DM, Woosley RL (1987) Polymorphism of propafenone metabolism in man. Circulation 75:785–791

    Google Scholar 

  27. Dahl M-L, Bertilsson L (1993) Genetically variable metabolism of antidepressants and neuroleptic drugs in man. Pharmacogenetics 3:61–70

    Google Scholar 

  28. Ayesh R, Idle JR, Ritchie JC, Crothers MJ, Hetzel MR (1984) Metabolic oxidation phenotypes as markers for susceptibility to lung cancer. Nature 311:169–170

    Google Scholar 

  29. Kaisary A, Smith P, Jacqz E, McAllister CB, Wilkinson GR, Ray WA, Branch RA (1987) Genetic predisposition to bladder cancer: ability to hydroxylate debrisoquine and mephenytoin as risk factors. Cancer Res 47:5488–5493

    Google Scholar 

  30. Armstrong M, Daly AK, Cholerton S, Bateman DN, Idle JR (1992) Mutant debrisoquine hydroxylation genes in Parkinson's disease. Lancet 339:1017–1018

    Google Scholar 

  31. Smith CAD, Gough AC, Leigh PN, Summers BA, Harding AE, Maranganore DM, Sturman SG, Schapira AHV, Williams AC, Spurr NK, Wolf CR (1992) Debrisoquine hydroxylase gene polymorphism and susceptibility to Parkinson's disease. Lancet 339:1375–1377

    Google Scholar 

  32. Wolf CR, Smith CAD, Gough AC, Moss JE, Vallis KA, Howard G, Carey FJ, Mills K, McNee W, Carmichael J, Spurr NK (1992) Relationship between the debrisoquine hydroxylase polymorphism and cancer susceptibility. Carcinogenesis 13:1035–1038

    Google Scholar 

  33. Tefre T, Daly AK, Armstrong M, Leathart JBS, Idle JR, Brogger A, Borresen A-L (1994) Genotyping of the CYP2D6 gene in Norwegian lung cancer patients and controls. Pharmacogenetics 4:47–57

    Google Scholar 

  34. Kupfer A, Dick B, Preisig R (1982) A new drug hydroxylation polymorphism in man: the incidence of mephenytoin hydroxylation deficient phenotypes in an European population study. Naunyn-Schmiedebergs Arch Pharmacol 321:33

    Google Scholar 

  35. Wilkinson GR, Guengerich FP, Branch RA (1989) Genetic polymorphisms of S-mephenytoin hydroxylation. Pharmacol Ther 43:53–76

    Google Scholar 

  36. Meier UT, Meyer UA (1987) Genetic polymorphism of human cytochrome P450 (S)-mephenytoin 4-hydroxylase. Studies with human autoantibodies suggest a fuctionally altered cytochrome P450 isozyme as cause of the genetic deficiency. Biochemistry 26:8466–8474

    Google Scholar 

  37. Umbenhauer DR, Martin MV, Lloyd RS, Guengerich FP (1987) Cloning and sequence determination of a complementary DNA related to human liver microsomal cytochrome P450 S-mephenytoin 4-hydroxylase. Biochemistry 26:1094–1099

    Google Scholar 

  38. Romkes M, Faletto MB, Blaisdell JA, Raucy JL, Goldstein JA (1991) Cloning and expression of complementary DNAs for multiple members of the human cytochrome P450IIC subfamily. Biochemistry 30:3247–3255

    Google Scholar 

  39. Brian WR, Srivastava PK, Umbenhauer DR, Lloyd RS, Guengerich FP (1989) Expression of a human liver cytochrome P450 protein with tolbutamide hydroxylase activity in Saccharomyces cerevisiae. Biochemistry 28:4993–4999

    Google Scholar 

  40. Furuya H, Meyer UA, Gelboin HV, Gonzalez FJ (1991) Polymerase chain reaction directed identification, cloning and quantification of human CYP2C18 mRNA. Mol Pharmacol 40:375–382

    Google Scholar 

  41. Wrighton SA, Stevens JC, Becker GW, VandenBranden M (1993) Isolation and characterization of human liver cytochrome P450 2C19: correlation between 2C19 and S-mephenytoin 4′-hydroxylation. Arch Biochem Biophys 306:240–245

    Google Scholar 

  42. Goldstein JA, Faletto MB, Romkes-Sparks M, Sullivan T, Kitareewan S, Raucy JL, Lasker JM, Ghanayem BI (1994) Evidence that CYP2C19 is the major (S)-mephenytoin 4′-hydroxylase in humans. Biochemistry 33:1743–1752

    Google Scholar 

  43. de Morais SMF, Wilkinson GR, Blaisdell J, Meyer UA, Nakamura K, Goldstein JA (1994) Identification of a new genetic defect responsible for the polymorphism of (S)-mephenytoin metabolism in Japanese. Mol Pharmacol 46:594–598

    Google Scholar 

  44. de Morais SMF, Wilkinson GR, Blaisdell J, Nakamura K, Meyer UA, Goldstein JA (1994) The major genetic defect responsible for the polymorphism of S-mephenytoin metabolism in humans. J Biol Chem 269:15419–15422

    PubMed  Google Scholar 

  45. Goldstein JA, de Morais SMF (1994) Biochemistry and molecular biology of the human CYP2C subfamily. Pharmacogenetics 4:285–300

    CAS  PubMed  Google Scholar 

  46. Brosen K, de Morais SMF, Meyer UA, Goldstein JA (1995) A multifamily study on the relationship between CYP2C19 genotype and the S-mephenytoin oxidation polymorphism. Pharmacogenetics (in press)

  47. Rost KL, Brosicke H, Brockmoller J, Scheffler M, Helge H, Roots I (1992) Increase of cytochrome P-450 1A2 activity by omeprazole: evidence by the 13C[N-3-methyl]-caffeine breath test in poor and extensive metabolizers of S-mephenytoin. Clin Pharmacol Ther 52:170–180

    Google Scholar 

  48. Ward SA, Helsby NA, Skjelbo E, Brosen K, Gram LF, Breckenbridge AM (1991) The activation of the biguanide antimalarial proguanil co-segregates with the mephenytoin oxidation phenotype-a panel study. Br J Clin Pharmacol 31:689–692

    Google Scholar 

  49. Scott J, Poffenbarger PL (1978) Pharmacogenetics of tolbutamide metabolism in humans. Diabetes 28:41–51

    Google Scholar 

  50. Relling MV, Aoyama T, Gonzalez FJ, Meyer UA (1990) Tolbutamide and mephenytoin hydroxyation by human cytochrome P450s in the CYP2C subfamily. J Pharmacol Exp Ther 152:442–447

    Google Scholar 

  51. Kimura S, Pastewka J, Gelboin HV, Gonzalez FJ (1987) cDNA and amino acid sequences of two members of the human P450IIC gene subfamily. Nucl Acids Res 15:10053–10054

    Google Scholar 

  52. Yasumori T, Kawano S, Nagata K, Shimada M, Yamazoe Y, Kalo R (1987) Nucleotide sequence of a human liver cytochrome P450 related to the rat male-specific form. J Biochem (Tokyo) 102:493–501

    Google Scholar 

  53. Meehan RR, Gosden JR, Rout D, Hastie ND, Friedberg T, Adesnik M, Buckland R, van Heyningen V, Fletcher J, Spurr NK, Sweeney J, Wolf CR (1988) Human cytochrome P450 PB-1: a multigene family involved in mephenytoin and steroid oxidations that maps to chromosome 10. Am J Hum Genet 42:26–37

    Google Scholar 

  54. Rettie AE, Wienkers LC, Gonzalez FJ, Trager WF, Korzekwa KR (1994) Impaired (S)-warfarin metabolism catalysed by the R144C allelic variant of CYP2C9. Pharmacogenetics 4:39–42

    Google Scholar 

  55. Veronese ME, Doecke CJ, Mackenzie PI, McManus ME, Miners JO, Rees DLP, Gasser R, Meyer UA, Birkett DJ (1993) Site-directed mutation studies of human liver cytochrome P-450 isoenzymes in the CYP2C subfamily. Biochem J 289:533–538

    Google Scholar 

  56. Veronese ME, Mackenzie PI, Doecke CJ, McManus ME, Miners JO, DJ Birkett (1991) Tolbutamide and phenytoin hydroxylations by cDNA-expressed human liver cytochrome P4502C9. Biochem Biophys Res Commun 175:1112–1118

    Google Scholar 

  57. Kaminsky LS, de Morais SMF, Faletto MB, Dunbar DA, Goldstein JA (1993) Correlation of human cytochrome P2502C substrate specificities with primary structure: warfarin as a probe. Mol Pharmacol 43:234–239

    Google Scholar 

  58. Wang S-L, Huang J-D, Lai M-D, Tsai J-J (1995) Detection of CYP2C9 polymorphism based on the polymerase chain reaction in Chinese. Pharmacogenetics 5:37–42

    Google Scholar 

  59. Veronese ME, Miners JO, Rees DLP, Birkett DJ (1993) Tolbutamide hydroxylation in humans: lack of bimodality in 106 healthy subjects. Pharmacogenetics 3:86–93

    Google Scholar 

  60. Inaba T (1990) Phenytoin: pharmacogenetic polymorphism of 4′-hydroxyation. Pharmacol Ther 46:341–347

    Google Scholar 

  61. Marshall ME, Mohler JL, Edmonds K, Williams B, Butler K, Ryles M, Weiss L, Urban D, Bueschen A, Markiewicz M, Cloud G (1994) An updated review of the clinical development of coumarin (1, 2-benzopyrone) and 7-hydroxycoumarin. J Cancer Res Clin Oncol 120 [Suppl]:S39-S42

    Google Scholar 

  62. Daly AK, Cholerton S, Armstrong M, Idle JR (1994) Genotyping for polymorphisms in xenobiotic metabolism as a predictor of disease susceptibility. Environ Health Perspect 102 [Suppl 9]:55–61

    Google Scholar 

  63. McCracken NW, Cholerton S, Idle JR (1992) Cotinine formation by cDNA-expressed human cytochromes P450. Med Sci Res 20:877–878

    Google Scholar 

  64. Cholerton S, Idle ME, Vas A, Gonzalez FJ, Idle JR (1992) Comparison of a novel thin-layer chromatographic-flourescence detection method with a spectrofluorometric method for the determination of 7-hydroxycoumarin in human urine. J Chromatogr 575:325–330

    Google Scholar 

  65. Rautio A, Kraul H, Kojo A, Salmela E, Pelkonen O (1992) Interindividual variation of coumarin 7-hydroxylase in healthy volunteers. Pharmacogenetics 2:227–233

    Google Scholar 

  66. Yamano S, Tatsuno J, Gonzalez FJ (1990) The CYP2A3gene product catalyses coumarin 7-hydroxylation in human liver microsomes. Biochemistry 29:1322–1329

    Google Scholar 

  67. Fernandez-Salguero P, Huffman SMG, Cholerton S, Mohrenweiser H, Raunio H, Pelkonen O, Huang J, Evans WE, Idle JR, Gonzalez FJ (1995) A genetic polymorphism in coumarin 7-hydroxylation: sequence of the human CYP2A genes and identification of variant CYP2A6 alleles. Am J Hum Genet 57:651–660

    Google Scholar 

  68. Guengerich FP, Kim D-H, Iwasaki M (1991) Role of human cytochrome P-450 IIE1 in the oxidation of many low molecular weight cancer suspects. Chem Res Toxicol 4:168–179

    Google Scholar 

  69. Patten CJ, Thomas PE, Guy RL, Lee M, Gonzalez FJ, Guengerich FP, Yang CS (1993) Cytochrome P450 enzymes involved in acetaminophen activation by rat and human liver microsomes and their kinetics. Chem Res Toxicol 6:511–518

    Google Scholar 

  70. Kim RB, O'Shea D, Wilkinson GR (1994) Relationship in healthy subjects between CYP2E1 genetic polymorphisms and the 6-hydroxylation of chlorzoxaazone: a putative measure of CYP2E1 activity. Pharmacogenetics 4:162–165

    Google Scholar 

  71. Vesell ES, DeAngelo Seaton T, A-Rahim YI (1995) Studies on interindividual variations of CYP2E1 using chlorzoxazone as an in vivo probe. Pharmacogenetics 5:53–57

    Google Scholar 

  72. Kim RB, O'Shea D, Wilkinson GR (1995) Interindividual variability of chlorzoxazone 6-hydroxylation in men and women and its relationship to CYP2E1 genetic polymorphisms. Clin Pharmacol Ther 57:645–655

    Google Scholar 

  73. Carriere V, Goasduff T, Ratanasavanh D, Morel F, Gautier JC, Guillouzo A, Beaune P, Berthou F (1993) Both cytochromes P450 2E1 and 1A2 are involved in the metabolism of chlorzoxazone. Chem Res Toxicol 6:852–857

    Google Scholar 

  74. Ono S, Hatanaka T, Hotta H, Tsutsui M, Satoh T, Gonzalez FJ (1995) Chlorzoxazone is metabolized by human CYP1A2 as well as by CYP2E1. Pharmacogenetics 5:141–148

    Google Scholar 

  75. Yamazaki H, Guo Z, Guengerich FP (1995) Selectivity of cytochrome P4502E1 in chlorzoxazone 6-hydroxylation. Drug Metab Dispos 23:438–440

    Google Scholar 

  76. McBride OW, Umeno M, Gelboin HV, Gonzalez FJ (1987) A Taq I polymorphism in the human P450IIE1 gene on chromosome 10 (CYP2E). Nucleic Acids Res 15:10071

    Google Scholar 

  77. Kelsell DP, Wolf CR, Spurr NK (1990) An XmnI RFLP detected with a probe for the CYP2E gene locus on chromosome 10. Nucleic Acids Res 18:3111

    Google Scholar 

  78. Hayashi S, Watanabe J, Kawagiri K (1991) Genetic polymorphisms in the 5′-flanking region change transcriptional regulation of the human cytochrome P450IIE1 gene. J Biochem 110:559–565

    Google Scholar 

  79. Uematsu F, Kikuchi H, Abe T, Motomiya M, Ohmachi T, Sagami I, Watanabe M (1991) MspI polymorphism of the human CYP2E gene. Nucleic Acids Res 19:5797

    Google Scholar 

  80. Kato S, Shields PG, Caporaso NE, Hoover RN, Trump BF, Sugimura H, Weston A, Harris CC (1992) Cytochrome P450IIE1 genetic polymorphisms, racial variation, and lung cancer risk. Cancer Res 52:6712–6715

    Google Scholar 

  81. Uematsu F, Kikuchi H, Motomiya M, Abe T, Sagami I, Ohmachi T, Wakui A, Kanamaru R, Watanabe M (1991) Association between restriction fragment polymorphism of the human P450IIE1 gene and susceptibility to lung cancer. Jpn J Cancer Res 82:254–256

    Google Scholar 

  82. Kellerman G, Shaw CR, Luyten-Kellerman M (1973) Aryl hydrocarbon hydroxylase inducibility and bronchogenic carcinoma. New Eng J Med 289:934–937

    Google Scholar 

  83. Kouri RE, McKinney CE, Slomiany DJ, Snodgrass DR, Wray NP, McLemore TL (1982) Positive correlation between high aryl hydrocarbon hydroxylase activity and primary lung cancer as analysed in cryopreserved lymphocytes. Cancer Res 42:5030–5037

    Google Scholar 

  84. Fujii-Kuriyama Y, Ema M, Mimura J, Matsushita N, Sogawa K (1995) Polymorphic forms of the AH receptor and induction of the CYP1A1 gene. Pharmacogenetics 5:S149-S153

    Google Scholar 

  85. Kawajiri K, Watanabe J, Eguchi H, Nakachi K, Kiyohara C, Hayashi S (1995) Polymorphisms of human Ah receptor gene are not involved in lung cancer. Pharmacogenetics 5:151–158

    Google Scholar 

  86. Hayashi S, Watanabe J, Nakachi K, Kawajiri K (1991) Genetic linkage of lung cancer-associated MspI polymorphisms with amino acid replacement in the heme binding region of the human cytochrome P450IA1 gene. J Biochem 110:407–411

    Google Scholar 

  87. Hirvonen A, Husgafvel-Pursianinen K, Karjalainen A, Antilla S, Vainio H (1992) Point-mutational MspI and Ile-Val polymorphisms closely linked in the CYP1AI gene: lack of association with susceptibility to lung cancer in a Finnish study population. Cancer Epidemiol Biomarkers Prevention 1:485–489

    Google Scholar 

  88. Hayashi S, Watanabe J, Kawajiri K (1992) High susceptibility to lung cancer analyzed in terms of combined genotypes of P4501A1 and Mu-class glutathione 5-transferase genes. Jpn J Cancer Res 83:866–870

    Google Scholar 

  89. Butler MA, Iwasaki M, Guengerich FP, Kadlubar FF (1989) Human cytochrome P450PA (P450IA2), the phenacetin O-deethylase, is primarily responsible for the hepatic 3-demethylation of caffeine and N-oxidation of carcinogenic arylamines. Proc Natl Acad Sci USA 86:7696–7700

    Google Scholar 

  90. Fuhr U, Doehmer J, Battula N, Wolfel C, Kudla C, Keita Y, Staib AH (1992) Biotransformation of caffeine and theophylline in mammalian cell lines genetically engineered for expression of single cytochrome P450 enzymes. Biochem Pharmacol 43:225–235

    Google Scholar 

  91. Lemoine A, Gautier JC, Azoulay D, Kiffel L, Belloc C, Guengerich FP, Maurel P, Beaune P, Leroux JP (1993) Major pathway of imipramine metabolism is catalyzed by cytochromes P-450 1A2 and P-450 3A4 in human liver. Mol Pharmacol 43:827–832

    Google Scholar 

  92. Bertilsson L, Carrillo JA, Dahl ML, Llerena A, Alm C, Bondesson U, Lindstrom L, Delarubia IR, Ramos S, Benitez J (1994) Clozapine disposition covaries with CYP1A2 activity determined by a caffeine test. Br J Clin Pharmacol 38:471–473

    Google Scholar 

  93. Kalow W, Tang B-K (1991) Use of caffeine metabolite ratios to explore CYP1A2 and xanthine oxidase activities. Clin Pharmacol Ther 50:508–519

    Google Scholar 

  94. Relling MV, Lin J-S, Ayers GD, Evans WE (1992) Racial and gender differences in N-acetyltransferase, xanthine oxidase and CYP1A2 activities. Clin Pharmacol Ther 52:643–658

    Google Scholar 

  95. Butler MA, Lang NP, Young JF, Caporaso NE, Vineis P, Hayes RB, Teitel CH, Massengill JP, Lawsen MF, Kadlubar FF (1992) Determination of CYP1A2 and acetyltransferase phenotype in human populations by analysis of caffeine urinary metabolites. Pharmacogenetics 2:116–127

    Google Scholar 

  96. Fuhr U, Rost KL (1994) Simple and reliable CYP1A2 phenotyping by the paraxanthine/caffeine ratio in plasma and saliva. Pharmacogenetics 4:109–116

    Google Scholar 

  97. Notarianni LJ, Oliver SE, Dobrocky P, Bennett PN, Silverman BW (1995) Caffeine as a metabolic probe: a comparison of the metabolic ratios used to assess CYP1A2 activity. Br J Clin Pharmacol 39:65–69

    Google Scholar 

  98. Nakajima M, Yokoi T, Mizutani M, Shin S, Kadlubar FF, Kamataki T (1994) Phenotyping of CYP1A2 in Japanese population by analysis of caffeine urinary metabolites: absence of mutation prescribing the phenotype in the CYP1A2 gene. Cancer Epidemiol Biomarkers Prev 3:413–421

    Google Scholar 

  99. Watkins PB (1994) Non-invasive tests of CYP3A enzymes. Pharmacogenetics 4:171–184

    Google Scholar 

  100. Aoyama T, Yamano S, Waxman DJ, Lapenson DP, Meyer UA, Fischer V, Tyndale R, Inaba T, Kalow W, Gelboin HV, Gonzalez FJ (1989) Cytochrome P450 hPCN3, a novel cytochrome P450 IIA gene product that is differentially expressed in adult human liver. J Biol Chem 264:10388–10395

    Google Scholar 

  101. Gillam EMJ, Guo Z, Ueng Y-F, Yamazaki H, Cock I, Reilly PEB, Hooper WD, Guengerich FP (1995) Expression of cytochrome P450 3A5 in Escherichia coli: effects of 5′ modification, purification, reconstitution conditions, and catalytic activities. Arch Biochem Biophys 317:374–384

    Article  CAS  PubMed  Google Scholar 

  102. Schuetz JD, Beach DL, Guzelian PS (1994) Selective expression of cytochrome P450 CYP3A mRNAs in embryonic and adult human liver. Pharmacogenetics 4:11–20

    Google Scholar 

  103. Phillips IR, Dolphin CT, Clair P, Hadley MR, Hutt AJ, McCombie RR, Smith RL, Shephard EA (1995) The molecular biology of the flavin-containing monooxygenases of man. Chem-Biol Interact 96:17–32

    Google Scholar 

  104. Ayesh R, Smith RL (1990) Genetic polymorphism of trimethylamine N-oxidation. Pharmacol Ther 45:387–401

    Google Scholar 

  105. Dixon CM, Park GR, Tarbet MH (1994) Characterization of the enzyme responsible for the metabolism of sumitriptan in human liver. Biochem Pharmacol 47:1253–1257

    Google Scholar 

  106. Weyler W, Hsu YP, Breakefield XO (1990) Biochemistry and genetics of monoamine oxidase. Pharmacol Ther 47:391–417

    Google Scholar 

  107. Waring RH (1980) Variation in the human metabolism of S-carboxymethylcysteine. Eur J Drug Metab Pharmacokinet 5:49–52

    Google Scholar 

  108. Meese CO, Fischer C, Kupfer A, Wisser H, Eichelbaum M (1991) Identification of the ‘major’ polymorphic carbocysteine metabolite as S-(carboxymethylthio)-l-cysteine. Biochem Pharmacol 42:R13-R16

    Google Scholar 

  109. Beedham C (1985) Molybdenum hydroxylases as drug-metabolizing enzymes. Drug Metab Rev 96:119–156

    Google Scholar 

  110. Holmes EW, Wyngaarden JB (1989) Hereditary xanthinuria. In: Scriver SC, Beaudet AL, Sly WS, Valle D (eds) The metabolic basis of inherited disease. McGraw Hill, New York, pp1085–1094

    Google Scholar 

  111. La Du BN (1988) The human-serum paraoxonase arylesterase polymorphism. Am J Hum Genet 43:227–229

    Google Scholar 

  112. Lockridge O (1990) Genetic variants of human serum cholinesterase influence metabolism of the muscle relaxant succinylcholine. Pharmacol Ther 47:35–60

    Google Scholar 

  113. Humbert R, Adler DA, Disteche CM, Hassett C, Omiecinski CJ, Furlong CE (1993) The molecular basis of the human serum paraoxonase activity polymorphism. Nat Genet 3:73–76

    CAS  PubMed  Google Scholar 

  114. Oesch F, Timms CW, Walker CH, Guenthner TM, Sparrow A, Watabe T, Wolf CR (1984) Existence of multiple forms of microsomal epoxide hydrolases with radically different substrate specificities. Carcinogenesis 5:7–9

    Google Scholar 

  115. Guenthner TM (1990) Epoxide hydrolases. In: Mulder GJ (ed) Conjugation reactions in drug metabolism: an integrated approach. Taylor and Francis, London, pp 365–404

    Google Scholar 

  116. Kroetz DL, McFarland LV, Kerr BM, Levy RH (1990) Distribution of microsomal epoxide hydrolase (mEH) activity in healthy subjects. Clin Pharmacol Ther 47:160

    Google Scholar 

  117. Norris KK, DeAngelo TM, Vesell ES (1989) Genetic and environmental factors that regulate cytosolic epoxide hydrolase activity in normal human lymphocytes. J Clin Invest 84:1749–1756

    Google Scholar 

  118. Hassett C, Aicher L, Sidhu JS, Omiecinski CJ (1994) Human microsomal epoxide hydrolase: genetic polymorphism and functional expression in vivo of amino acid variants. Human Mol Genet 3:421–428

    Google Scholar 

  119. Gaedigk A, Spielberg SP, Grant DM (1994) Characterization of the microsomal epoxide hydrolase gene in patients with anticonvulsant adverse reactions. Pharmacogenetics 4:142–153

    Google Scholar 

  120. Agarwal DP, Goedde HW (1992) Pharmacogenetics of alcohol metabolism and alcoholism. Pharmacogenetics 2:48–62

    Google Scholar 

  121. Milano G, Etienne MC (1994) Potential importance of dihydropyrimidine dehydrogenase (DPD) deficiency in cancer chemotherapy. Pharmacogenetics 4:301–306

    Google Scholar 

  122. Fleming RA, Milano G, Thyss A, Etienne MC, Renee N, Schneider M, Demard F (1992) Correlation between dihydropyridine dehydrogenase activity in peripheral mononuclear cells and systemic clearance of fluorouracil in cancer patients. Cancer Res 52:2899–2902

    Google Scholar 

  123. Berger R, Stoker-de Vries SA, Wadman SK, Duran M, Beemer FA, De Bree PK, Weits-Binnerts JJ, Penders TS, Van der Woude JK (1984) Dihydropyrimidine dehydrogenase deficiency leading to thymine-uraciluria. An inborn error of pyrimidine metabolism. Clin Chim Acta 141:227–234

    Google Scholar 

  124. Meinsma R, Fernandez-Salguero P, Van Kuilenburg ABP, Van Gennip AH, Gonzalez FJ (1995) Human polymorphism in drug metabolism: mutation in the dihydropyrimidine dehydrogenase gene results in exon skipping and thymine uracilurea. DNA Cell Biol 14:1–6

    Google Scholar 

  125. Lu Z, Zhang R, Diasio RB (1993) Dihydropyrimidine dehydrogenase activity in human peripheral blood mononuclear cells and liver: population characteristics, newly discovered deficient patients and clinical implications in 5-flourouracil chemotherapy. Cancer Res 53:5433–5438

    Google Scholar 

  126. Evans DAP (1989) N-Acetyltransferase. Pharmacol Ther 42:157–234

    Article  CAS  PubMed  Google Scholar 

  127. Hughes HB, Biehl JP, Jones AP, Schmidt LH (1954) Metabolism of isoniazid in man as related to the occurrence of peripheral neuritis. Am Rev Tuberculosis 70:266–273

    Google Scholar 

  128. Shear NH, Spielberg SP, Grant DM, Tang BK, Kalow W (1986) Differences in metabolism of sulphonamides predisposing to idiosyncratic toxicity. Ann Int Med 105:179–184

    Google Scholar 

  129. Ratain MJ, Mick R, Berezin F, Janisch L, Schilsky RL, Williams SF, Smiddy J (1991) Paradoxical relationship between acetylator phenotype and amonafide toxicity. Clin Pharmacol Ther 50:573–579

    Google Scholar 

  130. Bock KW (1992) Metabolic polymorphisms affecting activation of toxic and mutagenic arylamines. Trends Pharmacol Sci 13:223–226

    Google Scholar 

  131. Weber WW, Vatsis KP (1993) Individual variability in p-aminobenzoic acid N-acetylation by human N-acetyltransferase (NAT1) of peripheral blood. Pharmacogenetics 3:209–212

    Google Scholar 

  132. Cribb AE, Isbrucker R, Levatte T, Tsui B, Gillespie CT, Renton KW (1994) Acetylator phenotyping: the urinary caffeine metabolite ratio in slow acetylators correlates with a marker of systemic NAT1 activity. Pharmacogenetics 4:166–170

    Google Scholar 

  133. Vatsis KP, Weber WW (1993) Structural heterogeneity of Caucasian N-acetyltransferase at the NAT1 gene locus. Arch Biochem Biophys 301:71–76

    Google Scholar 

  134. Mannervik B, Danielson UH (1988) Glutathione transferases — structure and catalytic activity. CRC Crit Rev Biochem 23:281–334

    Google Scholar 

  135. Board P, Coggan M, Johnston P, Ross V, Suzuki T, Webb G (1990) Genetic heterogeneity of the human glutathione transferases: a complex of gene families. Pharmacol Ther 48:357–369

    Google Scholar 

  136. Comstock KE, Sanderson JS, Claflin G, Kenner WD (1990) GST1 gene deletion determined by polymerase chain reaction. Nucl Acids Res 18:3670

    Google Scholar 

  137. Widersten M, Pearson WR, Engstrom A, Mannervik B (1991) Heterologous expression of the allelic variant mu-class glutathione transferases mu and psi. Biochem J 276:519–524

    Google Scholar 

  138. Pemble S, Schroeder KR, Spencer SR, Meyer DJ, Hallier E, Bolt HM, Ketterer B, Taylor JB (1994) Human glutathione Stransferase theta (GSTT1): cDNA cloning and the characterization of a genetic polymorphism. Biochem J 300:271–276

    Google Scholar 

  139. Smith MT, Evans CG, Doane-Setzer P, Castro VM, Tahir MK, Mannervik B (1989) Denitrosation of 1,3-bis(2-chlorethyl)-1-nitrosourea by class μ glutathione transferases and its role in cellular resistance in rat brain tumor cells. Cancer Res 49:2621–2625

    Google Scholar 

  140. Evans CG, Bodell WJ, Ross D, Doane P, Smith MT (1986) Role of glutathione and related enzymes in brain tumor resistance to BCNU and nitrogen mustard. Proc Am Assoc Cancer Res 37:267

    Google Scholar 

  141. Seidegard J, Pero RW, Miller DG, Beattie E (1986) A glutathione transferase in human leukocytes as a marker for the susceptibility to lung cancer. Carcinogenesis 7:751–753

    Google Scholar 

  142. Zhong S, Howie AF, Ketterer B, Taylor J, Hayes JD, Beckett GJ, Wathen CG, Wolf CR, Spurr NK (1991) Glutathione Stranserase mu locus: use of genotyping and phenotyping assays to assess association with lung cancer susceptibility. Carcinogenesis 12:1533–1537

    Google Scholar 

  143. Heckbert SR, Weiss NS, Hornung SK, Eaton DL, Motulsky AG (1992) Glutathione S-transferase and epoxide hydrolase activity in human leukocytes in relation to risk of lung cancer and other smoking-related cancers. J Natl Cancer Inst 84:414–422

    Google Scholar 

  144. Nazar-Stewart V, Motulsky AG, Eaton DL, White E, Hornung SK, Leng Z-T, Stapleton P, Weiss NS (1993) The glutathione S-transferase μ polymorphism as a marker for susceptibility to lung carcinoma. Cancer Res 53:2313–2318

    Google Scholar 

  145. Brockmoller J, Kerb R, Drakoulis N, Nitz M, Roots I (1993) Genotype and phenotype of glutathione S-transferase class m isoenzymes μ and ψ in lung cancer patients and controls. Cancer Res 53:1004–1011

    Google Scholar 

  146. Hirvonen A, Husgafvel-Pursianinen K, Anttila S, Vainio H (1993) The GSTM1 null genotype as a potential risk modifier for squamous cell carcinoma of the lung. Carcinogenesis 14:1479–1481

    Google Scholar 

  147. Nakachi K, Imai K, Hayashi S, Kawajiri K (1993) Polymorphisms of the CYP1A1 and glutathione S-transferase genes associated with susceptibility to lung cancer in relation to cigarette dose in a Japanese population. Cancer Res 53:2944–2999

    Google Scholar 

  148. Alexandrie A, Ingelman-Sundberg M, Seidegard J, Tornling G, Rannug A (1994) Genetic susceptibility to lung cancer with special emphasis on CYP1A1 and GSTM1: a study of host factors in relation to age at onset, gender and histologic cancer types. Carcinogenesis 15:1785–1790

    Google Scholar 

  149. Kihara M, Kihara M, Noda K (1994) Lung cancer risk of GSTM1 null genotype is dependent on the extent of tobacco smoke exposure. Carcinogenesis 15:415–418

    Google Scholar 

  150. London SJ, Daly AK, Cooper J, Navidi WC, Carpenter CL, Idle JR (1995) Polymorphism of glutathione S-transferase M1 (GSTM1) and risk of lung cancer among African-Americans and Caucasians in Los Angeles county. J Natl Cancer Inst 87:1246–1253

    Google Scholar 

  151. Bell DA, Taylor JA, Paulson DF, Robertson CN, Monler JL, Lucier GW (1993) Genetic risk and carcinogen exposure: a common defect of the carcinogen-metabolism gene glutathione S-transferase M1 (GSTM1) that increases susceptibility to bladder cancer. J Natl Cancer Inst 85:1159–1164

    Google Scholar 

  152. Daly AK, Thomas DC, Cooper J, Pearson WR, Neal DE, Idle JR (1993) Homozygous deletion of the gene for glutathione S-transferase M1 in bladder cancer. BMJ 307:481–482

    Google Scholar 

  153. Lafuente A, Pujol F, Carretero P, Perez Villa J, Cuchi A (1993) Human glutathione S-transferase μ (GSTμ) deficiency as a marker for the susceptibility to bladder and larynx cancer among smokers. Cancer Lett 68:49–54

    Google Scholar 

  154. Zhong S, Wyllie AH, Barnes D, Wolf CR, Spurr NK (1993) Relationship between the GSTM1 polymorphism and susceptibility to bladder, breast and colon cancer. Carcinogenesis 14:1821–1824

    Google Scholar 

  155. Lin HJ, Han C-Y, Bernstein DA, Hsiao W, Lin BK, Hardy S (1994) Ethnic distribution of the glutathione transferase Mu 1–1 (GSTM1) null phenotype in 1473 individuals and application to bladder cancer susceptibility. Carcinogenesis 15:1077–1081

    Google Scholar 

  156. Brockmoller J, Kerb R, Drakoulis N, Staffeldt B, Roots I (1994) Glutathione S-transferase M1 and its variants A and B as host factors of bladder cancer susceptibility: a case-control study. Cancer Res 54:4103–4111

    Google Scholar 

  157. Miners JO, Mackenzie PI (1991) Drug glucuronidation in humans. Pharmacol Ther 51:347–369

    Google Scholar 

  158. Owens IS, Ritter JK (1992) The novel bilirubin/phenol UDP-glucuronosyltransferase UGT1 gene locus: implications for multiple familial hyperbilirubinaemia phenotypes. Pharmacogenetics 2:93–108

    Google Scholar 

  159. Bosma PJ, Roy Chowdhury J, Huang T-J, Lahiri P, Oude Elferink RPJ, van Es HHG, Lederstein M, Whitington PF, Jansen PLM, Roy Chowdhury N (1992) Mechanisms of inherited deficiencies of multiple UDP-glucuronosyltransferase isoforms in two patients wiht Crigler-Najjar syndrome, type I. FASEB J 6:2859–2863

    Google Scholar 

  160. Ritter JK, Yeatman MT, Ferreira P, Owens IS (1992) Identification of a genetic alteration in the code for bilirubin UDP-glucuronosyltransferase in the UGT1 gene complex of a Crigler-Najjar type I patients. J Clin Invest 90:150–155

    Google Scholar 

  161. Bosma PJ, Roy Chowdhury N, Goldhoorn BG, Hofker MH, Oude Elferink RPJ, Jansen PLM, Roy Chowdhury J (1992) Sequence of exons and the flanking regions of human bilirubin-UDP-glucuronosyltransferase gene complex and identification of a genetic mutation in a patient with Crigler-Najjar syndrome, type I. Hepatology 15:941–947

    Google Scholar 

  162. Moghrabi N, Clarke DJ, Burchell B, Boxer M (1993) Cosegregation of intragenic markers with a novel mutation that causes Crigler-Najjar syndrome type I: implication in carrier detection and prenatal diagnosis. Am J Hum Genet 53:722–729

    Google Scholar 

  163. Moghrabi N, Clarke DJ, Boxer M, Burchell B (1993) Identification of an A-to-G missense mutation in exon 2 of the UGT1 gene complex that causes Crigler-Najjar syndrome type 2. Genomics 18:171–173

    Google Scholar 

  164. Ritter JK, Yeatman MT, Kaiser C, Gridelli B, Owens IS (1993) A phenylalanine codon deletion at the UGT1 genecomplex locus of a Crigler-Najjar type I patient generates a pH-sensitive bilirubin UDP-glucuronosyltransferase. J Biol Chem 268:23573–23579

    Google Scholar 

  165. Erps LT, Ritter JK, Hersh JH, Blossom D, Martin NC, Owens IS (1994) Identification of 2 single-base substitutions in the UGT1 gene locus which abolish bilirubin uridine-diphosphate glucuronosyltransferase activity in vitro. J Clin Invest 93:564–570

    Google Scholar 

  166. Ciotti M, Yeatman MT, Sokol RJ, Owens IS (1995) Altered coding for a strictly conserved di-glycine in the major bilirubin UDP-glucuronosyltransferase of a Crigler-Najjar type I patient. J Biol Chem 270:3284–3291

    Google Scholar 

  167. Burchell B, Coughtrie MWH (1989) UDP-glucuronosyltransferases. Pharmacol Ther 43:261–289

    Google Scholar 

  168. de Morais SM, Uetrecht JP, Wells PG (1992) Decreased glucuronidation and increased bioactivation of acetaminophen in Gilbert's syndrome. Gastroenterology 102:577–586

    Google Scholar 

  169. Patel M, Tang BK, Kalow W (1992) Variability of acetaminophen metabolism in Caucasians and Orientals. Pharmacogenetics 2:38–45

    Google Scholar 

  170. Yue QY, Svensson JO, Sjoqvist F, Sawe J (1991) A comparison of the pharmacokinetics of codeine and its metabolites in healthy Chinese and Caucasian extensive hydroxylators of debrisoquine. Br J Clin Pharmacol 31:643–647

    Google Scholar 

  171. Liu HF, Vincent-Viry M, Galteau MM, Gueguen R, Magdalou J, Nicolas A, Leroy P, Siest G (1991) Urinary glucuronide excretion of fenofibric and clofibric acid glucuronides in man. Is it polymorphic? Eur J Clin Pharmacol 41:153–159

    Google Scholar 

  172. Vincent-Viry M, Cossy C, Galteau MM, Gueguen R, Magdalou J, Nicolas A, Leroy P, Siest G (1995) Lack of a genetic polymorphism in the glucuronidation of fenofibric acid. Pharmacogenetics 5:50–52

    Google Scholar 

  173. Weinshilboum R (1990) Sulphotransferase pharmacogenetics. Pharmacol Ther 45:93–107

    Google Scholar 

  174. Price RA, Cox NJ, Spielman RS, Van Loon JA, Maidak BL, Weinshilboum RM (1988) Inheritance of human platelet thermolabile phenol sulphotransferase (TLPST) activity. Genet Epidemiol 5:1–15

    Google Scholar 

  175. Price RA, Spielman RS, Lucena AL, Van Loon JA, Maidak BL, Weinshilboum RM (1989) Genetic polymorphism for human platelet thermostable phenol sulphotransferase (TSPST) activity. Genetics 122:905–914

    Google Scholar 

  176. Jones AL, Roberts RC, Coughtrie MWH (1993) The human phenolsulphotransferase polymorphism is determined by the level of expression of the enzyme protein. Biochem J 296:287–290

    Google Scholar 

  177. Ozawa S, Nagata K, Shimada M, Ueda M, Tsuzuki T, Yamazoe Y, Kalo R (1995) Primary strucutures and properties of two related forms of aryl sulfotransferases in human liver. Pharmacogenetics 5: S135-S140

    Google Scholar 

  178. Aksoy IA, Sochorova V, Weinshilboum RM (1993) Human liver dehydroepiandrosterone sulfotransferase: nature and extent of individual variation. Clin Pharmacol Ther 54:498–506

    Google Scholar 

  179. Otterness DM, Wieben ED, Wood TC, Watson RWG, Madden BJ, McCormick DJ, Weinshilboum RM (1992) Human liver dehydroepiandrosterone sulfotransferase: molecular cloning and expression of cDNA. Mol Pharmacol 41:865–872

    Google Scholar 

  180. Zhu X, Veronese ME, Bernard CCA, Sansom LN, McManus ME (1993) Identification of two human brain aryl sulfotransferase cDNAs. Biochem Biophys Res Commun 195:120–127

    Google Scholar 

  181. Wilborn TW, Comer KA, Dooley TP, Reardon IM, Heinrikson RL, Falany CN (1993) Sequence analysis and expression of the cDNA for the phenol sulfating form of human liver phenol sulfotransferase. Mol Pharmacol 43:70–77

    Google Scholar 

  182. Aksoy IA, Wood TC, Weinshilboum R (1994) Human liver estrogen sulfotransferase: identification by cDNA cloning and expression. Biochem Biophys Res Commun 200:1621–1629

    Google Scholar 

  183. Bernier F, Leblanc G, Labrie F, Luu-The V (1994) Structure of human estrogen and aryl sulfotransferase gene. J Biol Chem 269:28200–28205

    Google Scholar 

  184. Otterness DM, Her C, Aksoy S, Kimura S, Wieben ED, Weinshilboum RM (1995) Human dehydroepiandrosterone sulfotransferase gene: molecular cloning and structural characterization. DNA Cell Biol 14:331–341

    Google Scholar 

  185. Zhu X, Veronese ME, Sansom LN, McManus ME (1993) Molecular characerization of a human aryl sulfotransferase cDNA. Biochem Biophys Res Commun 192:671–676

    Google Scholar 

  186. Jones AL, Hagen M, Coughtrie MWH, Roberts RC, Glatt H (1995) Human platelet phenolsulfotransferases: cDNA cloning, stable expression in V79 cells and identification of a novel allelic variant of the phenol-sulfating form. Biochem Biophys Res Commun 208:855–862

    Google Scholar 

  187. Ganguly TC, Krasnykh V, Falany CN (1995) Xenobiotic sulfation by expressed human monoamine sulfating form of phenol sulfotransferase (hM-PST); comparison with phenol sulfating form of phenol sulfotransferase (hP-PST). FASEB J 9:A690

    Google Scholar 

  188. Romiti P, Giuliani L, Pacifici GM (1992) Interindividual variation in the N-sulphation of desipramine in human liver and platelets. Br J Clin Pharmacol 33:17–23

    Google Scholar 

  189. Weinshilboum R (1989) Methyltransferase pharmacogenetics. Pharmacol Ther 43:77–90

    Google Scholar 

  190. Weinshilboum R, Sladek SL (1980) Mercaptopurine pharmacogenetics: monogenic inheritance of erythrocyte thiopurine methyltransferase activity. Am J Hum Genet 32:651–662

    CAS  PubMed  Google Scholar 

  191. Krynetski EY, Schuetz JD, Galpin AJ, Pui C-H, Relling MV, Evans WE (1995) A single point mutation leading to loss of catalytic activity in human thiopurine S-methyltransferase. Proc Natl Acad Sci USA 92:949–953

    Google Scholar 

  192. Lennard L (1992) The clinical pharmacology of 6-mercaptopurine. Eur J Clin Pharmacol 43:329–339

    Google Scholar 

  193. Lennard L, van Loon JA, Weilshilboum RM (1989) Pharmacogenetics of acute azathioprine toxicity: relationship to thiopurine methyltransferase genetic polymorphism. Clin Pharmacol Ther 46:149–154

    CAS  PubMed  Google Scholar 

  194. Lennard L, Lilleyman JS, van Loon J, Weinshilboum RM (1990) Genetic variation in response to 6-mercaptopurine for childhood acute leukaemia. Lancet 236:225–229

    Google Scholar 

  195. Krynetski EY, Krynetski NF, Yanishevski Y, Evans WE (1995) Methylation of mercaptopurine, thioguanine, and their nucleotide metabolites by heterologously expressed human thiopurine S-methyltransferase. Mol Pharmacol 47:1141–1147

    Google Scholar 

  196. Evans WE, Horner M, Chu YQ, Kalwinsky D, Roberts WM (1991) Altered mercaptopurine metabolism, toxic effects and dosage requirement in a thiopurine methyltransferase-deficient child with acute lymphocytic leukaemia. J Pediatr 119:985–989

    Google Scholar 

  197. Hollander AAMJ, Vansaase JLCM, Kootte AMM, Vandorp WT, Vanbockel HJ, Vanes LA, Vanderwoude FJ (1995) Beneficial-effects of conversion from cyclosporine to azathioprine after kidney-transplantation. Lancet 345:610–614

    Google Scholar 

  198. Schutz E, Gummert J, Mohr F, Oellerich M (1993) Azathioprine-induced myelosuppression in thiopurine methyltransferase deficient heart transplant recipient. Lancet 341:436–437

    Google Scholar 

  199. Hanioka N, Kimura S, Meyer UA, Gonzalez FJ (1990) The human CYP2D locus associated with a common genetic defect in drug oxidation: a G1934 to A base change in intron 3 of a mutant CYP2D6 allele results in an aberrant 3′ splice recognition site. Am J Hum Genet 47:994–1001

    Google Scholar 

  200. Gough AC, Miles JS, Spurr NK, Moss JE, Gaedigk A, Eichelbaum M, Wolf CR (1990) Identification of the primary gene defect at the cytochrome P450 CYP2D locus. Nature 347:773–776

    Google Scholar 

  201. Tyndale R, Aoyama T, Broly F, Matsunaga T, Inaba T, Kalow W, Gelboin HV, Meyer UA, Gonzalez FJ (1991) Identification of a new CYP2D6 allele lacking the codon encoding Lys-201: possible association with the poor metabolizer phenotype. Pharmacogenetics 1:26–32

    Google Scholar 

  202. Gaedigk A, Blum M, Gaedigk R, Eichelbaum M, Meyer UA (1991) Deletion of the entire cytochrome P450 gene as a cause of impaired drug metabolism in poor metabolizers of the debrisoquine/sparteine polymorphism. Am J Hum Genet 48:943–950

    Google Scholar 

  203. Marez D, Sabbagh N, Legrand M, Lo-Guidice JM, Boone P, Broly F (1995) A novel CYP2D6 allele with an abolished splice recognition site associated with the poor metabolizer phenotype. Pharmacogenetics (in press)

  204. Broly F, Marez D, Sabbagh N, Legrand M, Boone P, Meyer UA (1995) An efficient strategy for detection of known and new mutations of the CYP2D6 gene using single strand conformation polymorphism analysis. Pharmacogenetics, (in press)

  205. Panserat S, Mura C, Gerard N, Vincent-Viry M, Galteau MM, Jacqz-Aigrain E, Krishnamorthy R (1994) DNA haplotypedependent differences in the amino acid sequence of debrisoquine 4-hydroxylase (CYP2D6): evidence for two major allozymes in extensive metabolisers. Hum Genet 94:401–406

    Google Scholar 

  206. Ingelman-Sundberg M, Oscarson M, Persson I, Masimirembwa CM, Dahl M-L, Bertilsson L, Sjoqvist F, Johansson I (1995) Genetic polymorphism of human drug metabolizing enzymes. Recent aspects on polymorphic forms of cytochromes P450. In: Boobis A (ed) COSTB1 meeting proceedings. Luxembourg: Office for Official Publications of the European Communities

    Google Scholar 

  207. Dahl ML, Johansson I, Bertilsson L, Ingelman-Sundberg M, Sjoqvist F (1995) Ultrarapid hydroxylation of debrisoquine in a Swedish population. Analysis of the molecular genetic basis. J Pharm Exp Ther 274:516–520

    Google Scholar 

  208. Evert B, Griese E-U, Eichelbaum M (1994) Cloning and sequencing of a new non-functional CYP2D6 allele: deletion of T1975 in exon 3 generates a premature stop codon. Pharmacogenetics 4:271–274

    Google Scholar 

  209. Daly AK, Leathart JBS, London SJ, Idle JR (1995) An inactive cytochrome P450 CYP2D6 allele containing a deletion and abase substitution. Human Genetics 95:337–341

    Google Scholar 

  210. Vatsis KP, Weber WW, Bell DA, Dupret J-M, Evans DAP, Grant DM, Hein DW, Lin HJ, Meyer UA, Relling MV, Sim E, Suzuki T, Yamazoe Y (1995) Nomenclature for N-acetyl-transferases. Pharmacogenetics 5:1–17

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Daly, A.K. Molecular basis of polymorphic drug metabolism. J Mol Med 73, 539–553 (1995). https://doi.org/10.1007/BF00195139

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00195139

Key words

Navigation