Skip to main content
Log in

Cryogenic transonic wind tunnels and the condensation of nitrogen

  • Originals
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

A brief tutorial on the need for Reynolds number similarity and the advent of cryogenic transonic wind tunnels is presented. Experimental results of nitrogen condensation in nozzles are collected and related to the flow in the wind tunnels. New theoretical approaches to a solution of the condensation problem in the supersaturated state are proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

a :

speed of sound

A :

area

{ovc}:

wing area/wing span

c p :

pressure coefficient, Eq. (12)

ΔG * :

energy of formation of a critical droplet, Eq. (14)

h :

altitude

J :

homogeneous nucleation rate, Eq. (13)

k :

Boltzmann constant

l :

characteristic length

M :

Mach number, Eq. (2)

n * :

number of molecules in a critical droplet, Eq. (14)

p :

static pressure

p 0 :

wind tunnel supply pressure

p 0 :

standard pressure

p :

equilibrium vapor pressure

P :

wind tunnel fan power

q :

dynamic pressure

Re :

Reynolds number, Eq. (1)

t :

time

T :

temperature

T 0 :

wind tunnel supply temperature

ν :

molecular volume

V :

air speed

γ:

ratio of specific heats

η :

dynamic viscosity

v :

kinematic viscosity

ϱ :

density

σ :

surface tension

References

  • AGARD 1980: Cryogenic wind tunnels. Lecture Series No. 111

  • DFVLR 1989: German aerospace research establishment. Research Department Fluid Mechanics, Scientific Report 1988

  • Düker, M.; Koppenwallner, G. 1981: Comparisons between experimental observations and predictions obtained with classical homogeneous nucleation theory for nitrogen condensation in large freejet experiments. Rarefied Gas Dynamics (ed. Fisher, S. S.), Prog. Astron. Aeron. 74, 1190–1210

  • Guo Youyi; Ji Guanghua; Wang Qun 1985: Private communication. Jiaotong University, Xi'an, China

    Google Scholar 

  • Hall, R. M. 1980: Real gas effects-II: Influence of condensation on minimum operating temperature of cryogenic wind tunnels. AGARD Lecture Series No. 111, 7.12–7.21

  • Hilbig, R.; Szodruch, J. 1989: The intelligent wing — aerodynamic developments for future transport aircraft. AIAA Paper no. 89-0534

  • Hilsenrath, J. et al. 1955: Tables of thermal properties of gases. National Bureau of Standards Circular 564. U.S. Government Printing Office, Washington, D.C.

    Google Scholar 

  • Hoare, M. R.; Pal, P.; Wegener, P. P. 1980: Argon clusters and homogeneous nucleation: comparison of experiment and theory. J. Coll. Surf. Sci. 75, 126–137

    Google Scholar 

  • Kilgore, R. A. 1974: The cryogenic wind tunnel for high Reynolds number testing. NASA-TM-X-70207

  • Küchemann, D. 1978: The aerodynamic design of aircraft. Pergamon International Library, Pergamon Press, New York

    Google Scholar 

  • Ludwieg, H. 1955: Der Rohrwindkanal. Z. Flugwiss. 3, 206–216

    Google Scholar 

  • McMasters, J. 1988: Private communication. Boeing Commercial Aircraft Co., Seattle, WA

  • Merkli, P. E.; Abuaf, N. 1977: Flow starting times in constant-area supersonic diffusers. AIAA J. 15, 1718–1722

    Google Scholar 

  • Pal, P.; Hoare, M. R. 1987: Thermodynamic properties and homogeneous nucleation of molecular clusters of nitrogen. J. Phys. Chem. 91, 2474–2479

    Google Scholar 

  • Proceedings of the First International Symposium on Cryogenic Wind Tunnels, 1979. Dept. of Aeronautics and Astronautics at the University of Southhampton, England

  • Schnerr, G. H.; Dohrmann, U. 1989: Numerical investigation of nitrogen condensation in 2-D transonic flows in cryogenic wind tunnels. IUTAM SYMPOSIUM, Adiabatic Waves in Liquid-Vapor Systems. August 28–September 1, 1989, Göttingen

  • Smelt, R. 1945: Power economy in high speed wind tunnels by choice of working fluid and temperature. Report No. Aero. 2081, Royal Aircraft Establishment, Farnborough, England

    Google Scholar 

  • Wagner, B.; Düker, M. 1983: Prediction of condensation onset and growth in the European transonic wind tunnel flow. 53rd meeting of the AGARD Fluid Dynamics Panel, Symposium on Wind Tunnels and Testing Techniques, Cesure, Turkey, 13.1–13.11

    Google Scholar 

  • Wegener, P. P. 1987: Nucleation of nitrogen: Experiment and theory J. Phys. Chem. 91, 2379–2481

    Google Scholar 

  • Wegener, P. P.; Buzyna, G. 1969: Experiments on shock stand-off distance in non-equilibrium flow. J. Fluid Mech. 37, 325–336

    Google Scholar 

  • Wegener, P. P.; Mirabel, P. 1987: Homogeneous nucleation in supersaturated vapors. Naturwissenschaften 74, 111–119

    Google Scholar 

  • Zahoransky, R. A. 1986: Nitrogen nucleation in an unsteady supersonic flow field. Z. Flugwiss. Weltraumforsch. 10, 34–37

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This paper is dedicated to my old friend Eberhard Berger upon his retirement from the Föttinger Institut of the Technical University of Berlin

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wegener, P.P. Cryogenic transonic wind tunnels and the condensation of nitrogen. Experiments in Fluids 11, 333–338 (1991). https://doi.org/10.1007/BF00194865

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00194865

Keywords

Navigation