Skip to main content

Film and Dropwise Condensation

  • Living reference work entry
  • First Online:
Handbook of Thermal Science and Engineering

Abstract

The chapter covers four main areas of condensation heat transfer. The process at the vapor-liquid interface during condensation is first discussed. In many cases it is adequate to assume equilibrium at the interface but in dropwise condensation and condensation of metals the interface temperature discontinuity plays and important role. The traditional problems of laminar film condensation on plates and tubes are covered in some detail including natural and forced convection problems, the effect of vapor superheat and of the presence of non-condensing gases in the vapor. The specific problems of condensation on finned surfaces and in microchannels are treated in some detail. An extensive section covers dropwise condensation and incudes both experimental investigations and theory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

Abbreviations

A :

Cross-sectional area of channel

A(r):

Distribution function; see Eq. 65

b :

Spacing between fin flanks at fin tip

D :

Vapor-gas diffusion coefficient

d :

Diameter of tube

d 0 :

Tube diameter measured to fin tip

d r :

Tube diameter measured to fin root

F :

Defined in Eq. 23

F x :

Defined in Eq. 17

f :

Fraction of surface area covered by drops with base radius greater than r

f f :

Defined in Eq. 35

f s :

Defined in Eq. 36

G :

Dimensionless quantity defined in Eq. 12, mass flux of vapor in channel

g :

Specific force of gravity

h :

Radial height of fin

h v :

Effective vertical height of fin; see Eqs. 40 and 41

h fg :

Specific latent heat of evaporation

K :

Defined in Eq. 19

K 1 :

Constant in Eq. 47

K 2 :

Constant defined in Eq. 60

K 20 :

Ratio of base to curved surface area of drop; see Eq. 52

K 21 :

Defined in Eq. 62

K 3 :

Constant in Eq. 69

k :

Thermal conductivity of condensate

L :

Height of condensing surface

L 0 :

Defined in Eq. 57

L 3 :

Defined in Eq. 70

M v :

Molar mass of vapor

M g :

Molar mass of noncondensing gas

m :

Interface mass flux, condensation mass flux

m x :

Local condensation mass flux

\( \overline{Nu} \) :

Mean Nusselt number

Nu d :

Nusselt number for condensation on horizontal tube

Nu x :

Local Nusselt number

N(r):

Distribution function; see Eq. 66

P :

Pressure of vapor-gas mixture

P v :

Vapor pressure

p :

Perimeter of channel

P sat(T v ):

Saturation temperature at T v

P sat(T 0 ):

Saturation temperature at T 0

n :

Constant in Eq. 64

Q :

Heat flux

Q 1 :

Defined in Eq. 58

Q 2 :

Defined in Eq. 59

Q 21 :

Value of Q 2 for steam at T sat = 373.15 K, i.e., Q 21 = 2.556 GW/m2

\( q,\overline{q} \) :

Heat flux, mean heat flux for surface

q b :

Mean heat flux at base of drop

q i :

Mean heat flux at curved surface of drop

q Nu :

Heat flux given by Nusselt theory

q* :

Dimensionless heat flux defined in Eq. 72

R :

Specific ideal-gas constant

Re x :

Reynolds number, U ρ v x/μ v

Re d :

Reynolds number, U ρ v d/μ v

\( \overset{\sim }{R} \)e x :

Two-phase Reynolds number, U ρx/μ

\( \overset{\sim }{R}e \) d :

Two-phase Reynolds number, U ρd/μ

r :

Base radius of drop

r c :

Radius of curvature of condensate surface, radius of curved surface of drop

r max :

Effective mean base radius of largest drop

r min :

Base radius of smallest viable drop

Sc :

Schmidt number, μ v v D

Sp :

Defined in Eq. 26

s :

Spacing between fin flanks at fin root

T v :

Vapor temperature

T w :

Wall temperature

T sat :

Saturation temperature

T 1sat :

373.15 K

T 0 :

Vapor-liquid interface temperature

T*:

Reference temperature

T t :

Defined in Eq. 37

T f :

Defined in Eq. 38

T s :

Defined in Eq. 39, saturation temperature

t :

Fin thickness at tip

t p :

Promoter layer thickness

U :

Vapor or vapor-gas mixture free stream velocity

u :

Condensate streamwise velocity

v f :

Specific volume of saturated liquid

v g :

Specific volume of saturated vapor

v fg :

v g − v f

W :

Mass fraction of noncondensing gas in the bulk

W 0 :

Mass fraction of noncondensing gas at the interface

X :

Defined in Eq. 25

x :

Coordinate along channel normal to streamwise direction

y :

Coordinate normal to surface

z :

Streamwise coordinate

α :

Heat-transfer coefficient qT

α z :

Local (averaged around perimeter) heat-transfer coefficient at distance z along channel

β :

Constant in Eq. 6, half angle at fin tip in Eqs. 33, 34, 35, and 36, contact angle, channel inclination to vertical in Eq. 43.

β x :

Defined in Eq. 30

γ :

Ratio of principal specific heat capacities of vapor

δ :

Local condensate film thickness

ΔP :

Difference between vapor pressure and saturation pressure at interface temperature

ΔT :

Vapor-surface temperature difference

ΔT c :

Temperature difference attributable to conduction in drop

ΔT i :

Temperature difference attributable to interphase matter transfer

ΔT p :

Temperature difference across promoter layer

ΔT σ :

Temperature difference attributable to surface curvature

Δρ :

ρ f ρ g

ζ :

Defined in Eq. 31, defined in Eq. 45

ε ΔT :

Enhancement ratio

θ :

Celsius temperature, dimensionless temperature difference defined in Eq. 73

θ 0 :

Defined in Eq. 74

λ :

Thermal conductivity of liquid

λ l :

Thermal conductivity of liquid

λ p :

Thermal conductivity of promoter layer

μ :

Viscosity of condensate

μ v :

Viscosity of vapor or vapor-gas mixture

v :

μ/ρ

ξ :

Constant in Eq. 1, function defined in Eq. 42

ρ :

Density of liquid, condensate

ρ v :

Density of vapor or vapor-gas mixture

ρ g :

Density of saturated vapor

ρ f :

Density of saturated liquid

ρ fg :

ρ f ρ g

\( \tilde{\rho} \) :

ρρ v

σ :

Surface tension

τ ι :

Streamwise vapor shear stress at condensate surface

ϕ :

Retention angle measured from top of tube

χ :

Vapor quality

ψ :

Angle between normal to channel surface and Y coordinate (see Fig. 1 of Wang and Rose 2005)

ω :

Defined in Eq. 29

References

  • Adamek T, Webb RL (1990) Prediction of film condensation on horizontal integral fin tubes. Int J Heat Mass Transf 33:1721–1735

    Article  Google Scholar 

  • Ali H, Wang HS, Briggs A, Rose JW (2013) Effect of vapor velocity and pressure on Marangoni condensation of steam-ethanol mixtures on a horizontal tube. J Heat Transf 135:091602-1

    Google Scholar 

  • Bandhauer TM, Agarwal A, Garimella S (2006) Measurements and modelling of condensation heat transfer coefficients in circular microchannels. Trans ASME J Heat Transf 128:1050–1059

    Article  Google Scholar 

  • Beatty KO, Katz DL (1948) Condensation of vapors on outside of finned tubes. Chem Eng Prog 44:55–70

    Google Scholar 

  • Berman LD (1969) Determination of mass transfer coefficient in calculations on condensation of steam containing air. Teploenergetika 16:68–71

    Google Scholar 

  • Briggs A, Rose (1994) Effect of fin efficiency on a model for condensation heat transfer on a horizontal integral fin tube. Int J Heat Mass Transf 37(Suppl):457–463

    Article  Google Scholar 

  • Briggs A, Rose JW (1998) Effects of interphase matter transfer and non-uniform wall temperature on a model for condensation on low-finned tubes. I J Transp Phenom 1:41–49

    Google Scholar 

  • Cavallini A, Del Col D, Doretti L, Matkovic M, Rossetto L, Zilio C (2005) A model for condensation inside minichannels. In: Proceedings of the ASME National heat transfer conference, San Francisco, paper HT2005-72528

    Google Scholar 

  • Cess RD (1960) Laminar film condensation on a flat plate in the absence of a body force. Z Angew Math Phys 11:426–433

    Article  MATH  MathSciNet  Google Scholar 

  • Chen MM (1961a) Analytical solution of laminar film condensation: part 1 flat plates. Trans ASME J Heat Transf 83:48–54

    Article  Google Scholar 

  • Chen MM (1961b) Analytical solution of laminar film condensation: part 2 single and multiple horizontal tubes. Trans ASME J Heat Transf 83:55–60

    Article  Google Scholar 

  • Citakoglu E, Rose JW (1968) Dropwise condensation – some factors influencing the validity of heat-transfer measurements. Int J Heat Mass Transf 11:523–537

    Article  Google Scholar 

  • Citakoglu E, Rose JW (1969) Dropwise condensation – the effect of surface inclination. Int J Heat Mass Transf 12:645–651

    Article  Google Scholar 

  • Denny VE, Mills AF (1969) Laminar film condensation of a flowing vapor on a horizontal cylinder at normal gravity. Trans ASME 91C:495–501

    Article  Google Scholar 

  • Enright R, Miljkovic N, Alverado JL, Kim K, Rose JW (2014) Dropwise condensation on micro- and nanostructured surfaces. Nanoscale Microscale Thermophysical Eng 18(3):223–250

    Article  Google Scholar 

  • Fatica N, Katz DL (1949) Dropwise condensation. Chem Eng Prog 45:661–674

    Google Scholar 

  • Fujii T, Uehara H (1972) Laminar filmwise condensation on a vertical surface. Int J Heat Mass Transf 15:217–233

    Article  Google Scholar 

  • Fujii T, Uehara H, Kurata C (1972a) Laminar filmwise condensation of a flowing vapour on a horizontal cylinder. Int J Heat Mass Transf 15:235–246

    Article  Google Scholar 

  • Fujii T, Uehara H, Oda K (1972b) Film condensation on a surface with uniform heat flux and body force convection. Heat Transf Jpn Res 4:76–83

    Google Scholar 

  • Fujii T, Uehara H, Mihara K, Kato K (1977) Forced convection condensation in the presence of non-condensables – a theoretical treatment for two-phase laminar boundary layer. Univ Kyushu Res Inst Ind Sci Rep 66:53–80

    Google Scholar 

  • Graham C (1969) The limiting mechanisms of dropwise condensation. PhD thesis, M.I.T

    Google Scholar 

  • Honda H, Nozu S (1987) A prediction method for heat transfer during film condensation on horizontal low integral-fin tubes. Trans ASME J Heat Transf 109:218–225

    Article  Google Scholar 

  • Honda H, Nozu S, Mitsumori K (1983) Augmentation of heat transfer on horizontal finned tubes by attaching a porous drainage plate. Proc ASME-JSME Therm Eng Joint Conf 3:289–296

    Google Scholar 

  • Ishiyama T, Yano T, Fujikawa S (2004a) Molecular dynamics study of kinetic boundary condition at an interface between argon vapor and its condensed phase. Phys Fluids 16:2899–2906

    Article  MATH  Google Scholar 

  • Ishiyama T, Yano T, Fujikawa S (2004b) Molecular dynamics study of kinetic boundary condition at an interface between a polyatomic vapor and its condensed phase. Phys Fluids 16:4713–4726

    Article  MATH  Google Scholar 

  • Ishiyama T, Yano T, Fujikawa S (2005) Kinetic boundary condition at a vapor-liquid interface. Phys Rev Lett 95:084504

    Article  Google Scholar 

  • Karkhu VA, Borovkov VP (1971) Film condensation of vapor at finely-finned horizontal tubes. Heat Transf Sov Res 3:183–191

    Google Scholar 

  • Kim S-M, Mudawar I (2012) Flow condensation in parallel microchannels – part 2: heat transfer results and correlation technique. Int J Heat Mass Transf 55:984–994

    Article  MATH  Google Scholar 

  • Kim S-M, Kim J, Mudawar I (2012) Flow condensation in parallel microchannels – part 1: experimental results and pressure drop correlations. Int J Heat Mass Transf 55:971–983

    Article  MATH  Google Scholar 

  • Knudsen M (1915) Die Maximale Verdampfungsgeschwindigkeit des Quecksilbers. Ann Phys Chem 47:697–708

    Article  Google Scholar 

  • Koh JC (1962) Laminar film condensation of condensable gases and mixtures on a flat plate. Proc 4th USA Nat Cong Appl Mech 2:1327–1336

    Google Scholar 

  • Koh JC, Sparrow EM, Hartnett JP (1961) The two-phase boundary layer in laminar film condensation. Int J Heat Mass Transf 2:69–82

    Article  Google Scholar 

  • Koyama S, Kuwahara K, Nakashita K (2003b) Condensation of refrigerant in a multi-port channel. In: 1st international conference on microchannels & minichannels, Rochester, pp 193–205

    Google Scholar 

  • Koyama S, Kuwahara K, Nakashita K, Yamamoto K (2003a) An experimental study on condensation of refrigerant R134a in a multi-port extruded tube. Int J Refrig 24:425–432

    Article  Google Scholar 

  • Labuntsov DA (1967) An analysis of evaporation and condensation processes. Teplofiz Vysok Temp 5:647–653

    Google Scholar 

  • Labuntsov DA, Kryukov AP (1979) Analysis of intensive evaporation and condensation. Int J Heat Mass Transf 22:989–1002

    Article  MATH  Google Scholar 

  • Labuntsov DA, Muratova TM (1969) Influence of motion on evaporation and condensation. Teplofiz Vysok Temp 7:1146–1150

    Google Scholar 

  • Le Fevre EJ (1964) See appendix G of Rose (1964)

    Google Scholar 

  • Le Fevre EJ, Rose JW (1964) Heat-transfer during dropwise condensation of steam. Int J Heat Mass Transf 7:272–273

    Article  Google Scholar 

  • Le Fevre EJ, Rose JW (1965) An experimental study of heat transfer by dropwise condensation. Int J Heat Mass Transf 8:1117–1133

    Article  Google Scholar 

  • Le Fevre EJ, Rose JW (1966) A theory of heat transfer by dropwise condensation. Proc 3rd Int Heat Transf Conf 2:362–375

    Google Scholar 

  • Lee WC, Rose JW (1982) Film condensation on a horizontal tube – effect of vapour velocity. Proc 7th Int Heat Transf Conf 5:101–106

    Google Scholar 

  • Masuda H, Rose (1987) Static configuration of liquid film on horizontal tubes with low radial fins. Proc R Soc Lond A410:125–139

    Article  Google Scholar 

  • Meland R, Frezzotti A, Ytrehus T, Hafskjold B (2004) Nonequilibrium molecular-dynamics simulation of net evaporation and net condensation, and evaluation of the gas-kinetic boundary condition at the interface. Phys Fluids 16:223–243

    Article  MATH  Google Scholar 

  • Memory SB, Rose JW (1986) Film condensation of ethylene glycol on a horizontal tube at high vapour velocity. Proc 8th Int Heat transfer Conf, San Francisco 4:1607–1612

    Google Scholar 

  • Memory SB, Rose JW (1991) Free convection laminar film condensation on a horizontal tube with variable wall temperature. Int J Heat Mass Transf 34:2775–2778

    Article  MATH  Google Scholar 

  • Michael AG, Rose JW, Daniels LC (1989) Forced convection condensation on a horizontal tube. Trans ASME J Heat Transfer 111:792–797

    Article  Google Scholar 

  • Mijlkovic N, Preston DJ, Wang EN (2016) Recent developments in altered wettability for enhancing condensation. In: Thome JR, Kim J (eds) Encyclopaedia of two-phase heat transfer and flow II, special topics and applications 3 special topics in condensation. World Scientific, Singapore, pp 85–131

    Google Scholar 

  • Mills AF, Tan C, Chung DK (1974) Experimental study of condensation from steam-air mixtures flowing over a horizontal tube: overall condensation rates. Proc 5th Int Heat Transf Conf Tokyo 5:20–23

    Google Scholar 

  • Minkowicz WJ, Sparrow EM (1966) Condensation heat transfer in the presence of noncondensables, interfacial resistance, superheating, variable properties and diffusion. Int J Heat Mass Transf 9:1125–1144

    Article  Google Scholar 

  • Nagayama G, Tsuruta T (2003) A general expression for the condensation coefficient based on transition state theory and molecular dynamics simulation. J Chem Phys 118:1392–1399

    Article  Google Scholar 

  • Niknejad J, Rose JW (1981) Interphase matter transfer – an experimental study of condensation of mercury. Proc R Soc London A 378:305–327

    Article  Google Scholar 

  • Niknejad J, Rose JW (1984) Comparisons between experiment and theory for dropwise condensation of mercury. Int J Heat Mass Transf 27:2253–2257

    Article  Google Scholar 

  • Nusselt W (1916) Die Oberflachencondensation des Wassserdampfes Z. Vereines Deutsch Ing 60:569–575

    Google Scholar 

  • Rahbar S, Rose JW (1984) New measurements for forced convection film condensation. 1st UK Natl Conf Heat Transf 1:609–632

    Google Scholar 

  • Rifert VG (1980) A new method for calculating rates of condensation on finned tubes. Heat Transfer Sov Res 12:142–147

    Google Scholar 

  • Rose JW (1964) Dropwise condensation of steam on vertical planes. PhD thesis, London University

    Google Scholar 

  • Rose JW (1967) On the mechanism of dropwise condensation. Int J Heat Mass Transf 10:755–762

    Article  Google Scholar 

  • Rose JW (1969) Condensation of a vapour in the presence of a non-condensing gas. Int J Heat Mass Transf 12:233–237

    Article  Google Scholar 

  • Rose JW (1976) Further aspects of dropwise condensation theory. Int J Heat Mass Transf 19:1363–1370

    Article  Google Scholar 

  • Rose JW (1980) Approximate equations for forced convection condensation in the presence of a non-condensing gas on a flat plate and horizontal tube. Int J Heat Mass Transf 23:539–546

    Article  Google Scholar 

  • Rose JW (1984) Effect of pressure gradient in forced convection film condensation on a horizontal tube. Int J Heat Mass Transf 27:39–47

    Article  Google Scholar 

  • Rose JW (1988a) Fundamentals of condensation heat transfer: laminar film condensation. JSME Int J Ser 2(31):357–375

    Google Scholar 

  • Rose JW (1988b) Some aspects of condensation heat transfer theory. Int Com Heat Mass Transf 15:449–473

    Article  Google Scholar 

  • Rose (1989) A new interpolation formula for forced convection condensation on a horizontal surface. Trans ASME 111:818–819

    Article  Google Scholar 

  • Rose JW (1994) An approximate equation for the vapor-side heat-transfer coefficient for condensation on low-finned tubes. Int J Heat Mass Transf 37:865–875

    Article  MATH  Google Scholar 

  • Rose JW (1998a) Interphase matter transfer the condensation coefficient and dropwise condensation. In: Proceedings of the 11th international heat transfer conference, vol 1, Kyongju, 23–28 Aug 1998, pp 89–104

    Google Scholar 

  • Rose JW (1998b) Condensation heat transfer fundamentals. Trans IChemE 76(part a):143–152

    Article  Google Scholar 

  • Rose JW (2000) Accurate approximate equations for intensive subsonic evaporation. Int J Heat Mass Transf 43:3869–3875

    Article  MATH  Google Scholar 

  • Rose JW (2002) Dropwise condensation theory and experiment: a review. Proc Instn Mech Eng Part A J Power Energy 251:115–170

    Article  Google Scholar 

  • Rose JW, Glicksman LR (1973) Dropwise condensation – on the distribution of drop sizes. Int J Heat Mass Transf 16:411–425

    Article  Google Scholar 

  • Schmidt E, Schurig W, Sellschopp W (1936) Versuche uber die Kondensation in Film- und Tropfenform. Tech Mech Thermodynamik 1:53–63

    Google Scholar 

  • Schrage RW (1953) A theoretical study of interphase mass transfer. Columbia University Press, New York

    Google Scholar 

  • Shekriladze IG, Gomelauri VI (1966) The theoretical study of laminar film condensation of a flowing vapour. Int J Heat Mass Transf 9:581–591

    Article  Google Scholar 

  • Sone Y, Onishi Y (1973) Kinetic theory of evaporation and condensation. J Phys Soc Jpn 35:1773–1776

    Article  Google Scholar 

  • Sparrow EM, Gregg JL (1959) A boundary layer treatment of laminar film condensation. J Heat Transfer 81:13–23

    Google Scholar 

  • Sparrow EM, Lin SH (1964) Condensation in the presence of a non-condensing gas. J Heat Transfer 86:430–436

    Article  Google Scholar 

  • Sparrow EM, Minkowycz WM, Saddy M (1967) Forced convection condensation in the presence of non-condensables and interface resistance. Int J Heat Mass Transf 10:1829–1845

    Article  Google Scholar 

  • Stylianou S, Rose JW (1980) Dropwise condensation on surfaces having different thermal conductivity. J Heat Transfer 102:477–482

    Article  Google Scholar 

  • Stylianou S, Rose JW (1982) Dropwise condensation of ethane diol. PhysicoChem Hydrodyn 3:199–213

    Google Scholar 

  • Su Q, Yu GX, Wang HS, Rose JW (2009) Microchannel condensation: correlations and theory. Int J Refrig 32:1149–1152

    Article  Google Scholar 

  • Tanaka H (1975) A theoretical study on dropwise condensation. J Heat Transfer 97:72–98

    Article  Google Scholar 

  • Tanasawa H (1974). Critical size of departing drops. In: Proceedings of the 5th international heat transfer conference, vol 7, Tokyo, 3–7 Sept 1974, p 188

    Google Scholar 

  • Tanasawa I, Ochiai J (1973) Experimental study on heat transfer during dropwise condensation. Bull Jpn Soc Mech Eng 16:1184–1197

    Article  Google Scholar 

  • Tanasawa I, Ochiai J, Utaka Y, Enya S (1974) Proceedings of the 11th Japan heat transfer symposium, p 229 (in Japanese)

    Google Scholar 

  • Tasnasawa I, Utaka Y (1983) Measurement of condensation curves for dropwise condensation of steam at atmospheric pressure. J Heat Transf 105(3):633–638

    Article  Google Scholar 

  • Tsuruta T, Nagayama G (2005) A microscopic formulation of condensation coefficient and interface transport phenomena. Energy 30(6):795–805

    Article  Google Scholar 

  • Umur A, Griffith P (1965) Mechanism of dropwise condensation. J Heat Transf 87:275–282

    Article  Google Scholar 

  • Wang HS, Rose JW (2005) A theory of film condensation in horizontal noncircular section microchannels. Trans ASME J Heat Transf 127:1096–1105

    Article  Google Scholar 

  • Wang HS, Rose JW (2011) Theory of heat transfer during condensation in microchannels. Int J Heat Mass Transf 54:2525–2534

    Article  MATH  Google Scholar 

  • Wang ZJ, Chen M, Guo ZY (2003) A molecular study of the liquid-vapor interphase transport. Microscale Thermophys Eng 7:275–289

    Article  Google Scholar 

  • Wanniarachchi AS, Marto PJ, Rose JW (1985) Film condensation of steam on horizontal finned tubes. Effect of fin spacing, thickness and height (1985). Multiphase flow and heat transfer. ASME HTD 47:93–99

    Google Scholar 

  • Webb RL, Rudy TM, Kedzierski MA (1985) Prediction of condensation coefficient on horizontal integral-fin tubes. Trans ASME J Heat Transfer 107:369–376

    Article  Google Scholar 

  • Wenzel H (1957) Versuche über Tropfenkondensation. Allg Wärmetech 8:53–59

    Google Scholar 

  • Wilmshurst R, Rose JW (1970) Dropwise condensation – further heat-transfer measurements. In: Proceedings of the 4th international heat-transfer conference, Versailles, Paper Cs 1.4

    Google Scholar 

  • Wilmshurst R, Rose JW (1974) Dropwise and filmwise condensation of aniline, ethane diol and nitrobenzene. In: Proceedings of the 5th international heat-transfer conference, Tokyo. Japan Soc Mech Eng, pp 269–273

    Google Scholar 

  • Ytrehus T, Alvestad J (1981) A Mott-Smith solution for non-linear condensation. In: Fisher SS (ed) Rarefied Gas Dynamics, Prog. Astro. and Aero.74, pp 330–345

    Google Scholar 

  • Zhou Y-Q, Rose (1996) Effect of two-dimensional conduction in the condensate film on laminar film condensation on a horizontal tube with variable wall temperature. Int J Heat Mass Transf 39:3187–3191

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John W. Rose .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this entry

Cite this entry

Rose, J.W. (2017). Film and Dropwise Condensation. In: Kulacki, F. (eds) Handbook of Thermal Science and Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-32003-8_50-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-32003-8_50-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-32003-8

  • Online ISBN: 978-3-319-32003-8

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics