Skip to main content
Log in

Mechanosensitivity of cell membranes

Ion channels, lipid matrix and cytoskeleton

  • Invited Review
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

Physical and biophysical mechanisms of mechano-sensitivity of cell membranes are reviewed. The possible roles of the lipid matrix and of the cytoskeleton in membrane mechanoreception are discussed. Techniques for generation of static strains and dynamic curvatures of membrane patches are considered. A unified model for stress-activated and stress-inactivated ion channels under static strains is described. A review of work on stress-sensitive pores in lipid-peptide model membranes is presented. The possible role of flexoelectricity in mechano-electric transduction, e.g. in auditory receptors is discussed. Studies of flexoelectricity in model lipid membranes, lipid-peptide membranes and natural membranes containing ion channels are reviewed. Finally, possible applications in molecular electronics of mechanosensors employing some of the recognized principles of mechano-electric transduction in natural membranes are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

BLM:

Layer lipid membrane

SAC:

stress-activated channel

SIC:

stress-inactivated channel

MCYST:

microcystin-LR

DPhL:

diphytanoyl lecithin

CME:

condenser microphone effect

References

  • Beresnev LA, Blinov LM, Kovshev EI (1982) On the possibility of ferroelectricity in biomembranes. DAN SSSR 265:210–213

    Google Scholar 

  • Blumenfeld LA (1974) Problemi biologicheskoj fiziki. Nauka, Moscow

    Google Scholar 

  • Bograchova TJ, Passechnik VI, Sokolov VS (1974) The influence of periodical stretch on the conductivity of modified bilayer lipid membranes. Study Biophys 42:75–76

    Google Scholar 

  • Brasseur R (1991) Differentiation of lipid-associating helices by use of three-dimensional molecular hydrophobicity potential calculations. J Biol Chem 266:16120–16127

    Google Scholar 

  • Brehm P, Kullberg R, Moody-Corbett F (1984) Properties of nonjunctional acetylcholine receptor channel on innervated muscle of Xenopus laevis. J Physiol 350:631–648

    Google Scholar 

  • Brochard F, Lennon JF (1975) Frequency spectrum of the flicker phenomenon in erythrocytes. J Phys 36:1035–1047

    Google Scholar 

  • Clausen C, Fernandez JM (1981) A low cost method for rapid transfer function measurement with direct application to biological impedance analysis. Pfluegers Arch Eur J Physiol 390:290–294

    Google Scholar 

  • Coronado R, Latorre R (1983) Phospholipid bilayers made from monolayers on patch-clamp pipettes. Biophys J 43:231–236

    Google Scholar 

  • Delcour AH, Martinac B, Adler J, Kung C (1989) Modified reconstitution method used in patch-clamp studies of Escherichia coli ion channels. Biophys J 56:631–636

    Google Scholar 

  • Derzhanski A, Petrov AG (1982) Multipole model of the molecular asymmetry in thermotropic and lyotropic liquid crystals. Mol Cryst Liq Cryst 89:339–360

    Google Scholar 

  • Derzhanski A, Petrov AG, Pavloff YV (1981) Curvature-induced conductive and displacement currents through lipid bilayers. J Phys Lett (Paris) 42: L119-L122

    Google Scholar 

  • Derzhanski A, Petrov AG, Todorov A (1989) Flexoelectricity of layered and columnar lyotropic phases. Bulg J Phys (Sofia) 16:268–280

    Google Scholar 

  • Derzhanski A, Petrov AG, Todorov A, Hristova K (1990) Flexoelectricity of lipid bilayers. Liq Cryst 7:439–449

    Google Scholar 

  • Duwe H-P 1989 Korrelationsanalyse thermischer Formfluktuationen von Vesikeln mittels schneller, digitaler Bildverarbeitung. Dissertation, TU Munich

  • Duwe H-P, Engelhardt H, Zilker A, Sackmann E (1987) Curvature elasticity of smectic A lipid bilayers and cell plasma membranes. Mol Cryst Liq Cryst 152:1–7

    Google Scholar 

  • Duwe H-P, Eggl P, Sackmann E (1989) The cell plasma membrane as composite system of two-dimensional liquid crystal and macromolecular network and how to mimick its physical properties. Angew Makromol Chem 166/167:1–19

    Google Scholar 

  • Evans EA, Hochmuth RM (1978) Mechanochemical properties of membranes. In: Kleinzeller A, Bronner F (eds) Current topics in membranes and transport, vol 10. Academic Press, New York, pp 1–62

    Google Scholar 

  • Evans EA, Needham D (1986) Giant vesicle bilayers composed of mixtures of lipids, cholesterol and polypeptides. Faraday Discuss Chem Soc 81:267–280

    Google Scholar 

  • Evans EA, Rawicz W (1990) Entropy-driven tension and bending elasticity in condensed-fluid membranes. Phys Rev Lett 64:2094–2097

    Article  CAS  PubMed  Google Scholar 

  • Fidler N, Fernandez JM (1989) Phase tracking: an improved phase detection technique for cell membrane capacitance measurements. Biophys J 56:1153–1162

    Google Scholar 

  • Flerov MN (1981) Mechanosensitivity and current-voltage characteristics of ion channels in bilayer lipid membranes. PhD Thesis, Moscow State University

  • Gruen DWR, Wolfe J (1982) Lateral tensions and pressures in membranes and lipid monolayers. Biochim Biophys Acta 688:572–580

    Google Scholar 

  • Guharay F, Sachs F (1984) Stretch-activated single ion channel currents in tissue-cultured embrionic chick skeletal muscle. J Physiol 352:685–701

    Google Scholar 

  • Gustin MC, Zhou X-L, Martinac B, Kung C (1988) A mechanosensitive ion channel in the yeast plasma membrane. Science 242:762–765

    Google Scholar 

  • Hamill OP, Lane JW McBride Jr DW (1992) Amiloride: a molecular probe for mechanosensitive channels. TiPS 13:373–376

    Google Scholar 

  • Harbich W Helfrich W (1979) Alignment and opening of giant lecithin vesicles by electric fields. Z Naturforsch 34a:1063–1065

    Google Scholar 

  • Helfrich W (1973) Elastic properties of lipid bilayers: theory and possible experiments. Z Naturforsch 28c:693–703

    Google Scholar 

  • Hladky SB, Hayden DA (1984) Ion movements in gramicidin channels. In: Brenner F (ed) Current topics in membranes and transport, vol 21. Academic Press, New York, pp 327–372

    Google Scholar 

  • Howard J, Roberts WM, Hudspeth AJ (1988) Mechanoelectrical transduction by hair cells. Annu Rev Biophys Chem 17:99–124

    Google Scholar 

  • Huang HW (1986) Deformation free energy of bilayer membrane and its effect on gramicidin channel lifetime. Biophys J 50:1061–1070

    Google Scholar 

  • Hudspeth AJ (1982) Extracellular current flow and the site of transduction by vertebrate hair cells. J Neurosci 2:1–10

    Google Scholar 

  • Hudspeth AJ (1983) Mechanoelectrical transduction by hair cells in the acousticolateralis sensory system. Ann Rev Neurosci 6:187–215

    Google Scholar 

  • Joshi C, Fernandez JM (1988) Capacitance measurements. An analysis of the phase detector technique used to study exocytosis and endocytosis. Biophys J 53:885–892

    Google Scholar 

  • Katchalski A, Curran PF (1965) Nonequilibrium thermodynamics in biophysics, Chapter 10. Harvard University Press, Cambrige Mass

    Google Scholar 

  • Kwok R, Evans E (1981) Thermoelasticity of large lecithin bilayer vesicles. Biophys J 35:637–652

    Google Scholar 

  • Lecar H, Morris CE (1993) Biophysics of mechanotransduction. In: Rubanyi GM (ed) Mechanoreception by the vascular wall. Futura Publ Co, Inc, Mount Kisco, NY, pp 1–11

    Google Scholar 

  • Lennon JF (1977) Le scintillement de l'erythrocyte. Doctoral thesis, University Paris-Sud, Orsay

    Google Scholar 

  • Litster JD (1975) Stability of lipid bilayers and red blood cell membranes. Phys Lett 53A:193–194

    Google Scholar 

  • Loizjanskii LG (1987) Fluid and gas mechanics (in Russian). Moscow, Nauka

    Google Scholar 

  • Markin VS, Martinac B (1991) Mechanosensitive ion channels as reporters of bilayer expansion. Biophys J 60:1120–1127

    Google Scholar 

  • Matrinac B, Adler J, Kung C (1990) Mechanosensitive ion channels of E. coli activated by amphipaths. Nature 348:261–263

    Google Scholar 

  • Meyer RB (1969) Piezoelectric effects in liquid crystals. Phys Rev Lett 22:918–922

    Google Scholar 

  • Mitov MD, Faucon JF, Meleard P, Bothorel P (1992) Thermal fluctuations of membranes. Adv Supramol Chem 2:93–139

    Google Scholar 

  • Morris CE (1990) Mechanosensitive ion channels. J Membr Biol 113:93–107

    Google Scholar 

  • Morris CE, Horn R (1991) Failure to elicit neuronal macroscopic mechanosensitive currents anticipated by single-channel studies. Science 251:1246–1249

    Google Scholar 

  • Morris CE, Sigurdson WJ (1989) Stretch-inactivated ion channels coexist with stretch-activated ion channels. Science 243:807–809

    Google Scholar 

  • Neher E, Marty A (1982) Discrete changes of cell membrane capacitance observed under conditions of enhanced secretion in bovine adrenal chromaffin cells. Proc Natl Acad Sci, USA 79:6712–6716

    Google Scholar 

  • Neumann E, Sowers AE, Jordan CA (eds) (1989) Electroporation and electrofusion in cell biology. Plenum Press, New York London

    Google Scholar 

  • Ochs AL, Burton RM (1974) Electrical response to vibration of a lipid bilayer membrane. Biophys J 37:667–672

    Google Scholar 

  • Olesen S-P, Clapham D, Davies PF (1988) Haemodynamic shear stress activates a K+ current in vascular endothelial cells. Nature 331:168–170

    Google Scholar 

  • Parisi M, Rivas E (1971) Transient conductance changes induced by pressure in artificial lipidic membranes. Biochim Biophys Acta 233:469–473

    Google Scholar 

  • Passechnik VI (1972) Modelling of mechanoreception with the help of modified bimolecular membranes. 4th Internat Biophys Congress, Moscow 1972. Abstracts vol 4, E XVIa 5/9, pp 44–45

  • Passechnik VI (1974) Possible mechanism of functioning of the elementary mechanosensitive center. Biofizika (Moscow) 19:1020–1924

    Google Scholar 

  • Passechnik VI (1977) The problem of energy transformation in mechanoreceptors. Biofizika (Moscow) 22:1024–1029

    Google Scholar 

  • Passechnik VI (1983) Viscoelastic properties of biomembrane models and mechanoreception processes. DSc Thesis, Moscow State University

  • Passechnik VI (1988) Mechanisms of the hearing organ (in Russian). Ace Sci Techn VINITI. Human and Animal Physiol Ser 39:6121

    Google Scholar 

  • Passechnik VI, Bichkova EJ (1978) Piezoeffect, background conductivity and filtration coefficient of bilayer lipid membranes. Biofizika (Moscow) 23:551–552

    Google Scholar 

  • Passechnik VI, Flerov MN (1983) Influence of the mechanical deformation of membrane on the parameters of the ion channel formed by gramicidin A. In: Bilayer lipid membranes. Far East Sci Center Acad Sci USSR, Vladivostok, pp 90–110

    Google Scholar 

  • Passechnik VI, Sokolov VS (1973) Permeability change of modified bimolecular phospholipid membranes accompanying periodical expansion. Biofizika (Moscow) 18:655–660

    Google Scholar 

  • Passechnik VI, Vitvizki VM (1975) Mechanosensitivity of the membranes modified with the pore-forming substances. Biofizika (Moscow) 20:332–333

    Google Scholar 

  • Pastushenko VF, Petrov AG (1984) Electromechanical mechanism of pore formation in bilayer lipid membranes. Seventh School Biophys Membrane Transport, Poland, School Proc vol 2:69–91

    Google Scholar 

  • Petrov AG (1975) Flexoelectric model for active transport. In: Physical and chemical bases of biological information transfer. Plenum Press, New York London, pp 111–125

    Google Scholar 

  • Petrov AG (1978) Mechanisms of curvature-induced membrane polarization and their influence on some membrane properties. Studia biophysica 74:51–52; Microfiche 4:14–25

    Google Scholar 

  • Petrov AG (1981) The problem of self-assembly of lipids and proteins into liquid crystalline membrane structures. Sixth School Biophys Membrane Transport, Poland. School Proc Wroclaw 1:116–145

    Google Scholar 

  • Petrov AG (1984) Flexoelectricity of lyotropics and biomembranes. Nuovo Cimento 3D:174–192

    Google Scholar 

  • Petrov AG (1986) Molecular physics and biophysical aspects of lyotropic liquid crystalline state of matter. DSc Thesis, Bulgarian Academy of Sciences, Sofia

    Google Scholar 

  • Petrov AG (1988) Generalized lipid asymmetry and instability phenomena in membranes. Ninth School Biophys Membrane Transport, Poland, School Proc Wroclaw 2:67–86

    Google Scholar 

  • Petrov AG (1992) Flexoelectricity of membranes and electric double layers. In: Jennings BR, Stoylov SP (eds) Colloid and molecular electrooptics. Inst Physics Publ. Bristol Philadelphia, pp 171–176

    Google Scholar 

  • Petrov AG, Bivas I (1984) Elastic and flexoelectric aspects of out-ofplane fluctuations in biological and model membranes. Prog Surface Sci 16:386–512

    Google Scholar 

  • Petrov AG, Derzhanski A (1976) On some problems in the theory of elastic and flexoelectric effects in bilayer lipid membranes and biomembranes. J Phys Suppl 37:C3–155-C3–160

    Google Scholar 

  • Petrov AG, Derzhanski A (1987) Generalized asymmetry of thermotropic and lyotropic mesogens. Mol Cryst Liq Cryst 151:303–333

    Google Scholar 

  • Petrov AG, Sokolov VS (1986) Curvature-electric effect in black lipid membranes. Dynamic characteristics. Eur Biophys J 13:139–155

    Google Scholar 

  • Petrov AG, Seleznev SA, Derzhanski A (1979) Principles and methods of liquid crystal physics applied to the structure and functions of biological membranes. Acta Phys Pol A55:385–405

    Google Scholar 

  • Petrov AG, Mitov MD, Derzhanski A (1980) Edge energy and pore stability in bilayer lipid membranes. In: Bata L (ed) Adv liquid crystal res appls. Pergamon Press, Oxford, pp 695–737

    Google Scholar 

  • Petrov AG, Ramsey RL, Usherwood PNR (1989) Curvature-electric effects in artificial and natural membranes studied using patchclamp techniques. Eur Biophys J 17:13–17

    Google Scholar 

  • Petrov AG, Ramsey RL, Codd GA, Usherwood PNR (1991a) Modelling mechanosensitivity in membranes: Effects of lateral tension on ionic pores in a microcystin-toxin containing membrane. Eur Biophys J 20:17–29

    Google Scholar 

  • Petrov AG, Todorov AT, Bonev B, Blinov LM, Subachyus DB, Tsvetkova N (1991b) Manifestation of ferroelectricity in lyotropics with chiral additives: Biomembranes' analogs. Ferroelectrics 114:415–427

    Google Scholar 

  • Petrov AG, Usherwood PNR, Miller BA (1992) Mechano-electricity of guest-host membrane systems: lipid bilayers containing ion channels. Mol Cryst Liq Cryst 215:109–119

    Google Scholar 

  • Petrov AG, Miller BA, Hrtistova K, Usherwood PNR (1993) Flexoelectric effects in model and native membranes containing ion channels. Eur Biophys J 22:283–300

    Google Scholar 

  • Sachs F (1986) Biophysics of mechanoreception. Membr Biochem 6:173–195

    Google Scholar 

  • Sachs F (1987) Baroreceptor mechanisms at the cellular level. Fed Proc 46:12–16

    Google Scholar 

  • Sachs F (1988) Mechanical transduction in biological systems. CRC Crit Rev Biomed Eng 16:141–169

    Google Scholar 

  • Sachs F (1989) In: Stein WD, Bronner F (eds) Cell shape: Determinants, regulation and regulatory role. Academic Press, New York, pp 63–92

    Google Scholar 

  • Sachs F, Lecar H (1991) Stochastic models for mechanical transduction. Biophys J 59:1143–1145

    Google Scholar 

  • Sackmann E (1978) Dynamic molecular organization in vesicles and membranes. Ber Bunsenges Phys Chem 82:891–909

    Google Scholar 

  • Sackmann E (1983) Physical foundations of the molecular organization and dynamics of membranes. In: Hoppe W Lohmann W, Markl H, Ziegler H (eds) Biophysics. Springer, Berlin Heidelberg, pp 425–457

    Google Scholar 

  • Sackmann E (1984) Physical basis of trigger processes and membrane structure. In: Chapman D (ed) Biological membranes. Vol 5. Academic Press, London, pp 105–143

    Google Scholar 

  • Sackmann E, Duwe H-P, Pfeiffer W (1989) On the biomembranes as composite lamellae of smectic A liquid crystal and macro molecular network: elastic properties, local and collective dynamics. Phys Scr T25:107–113

    Google Scholar 

  • Sakmann B, Neher E (eds) (1983) Single-channel recordings. Plenum Press, New York

    Google Scholar 

  • Sansom MSP (1991) The biophysics of peptide models of ion channels. Prog Biophys Mol Biol 55:139–235

    Google Scholar 

  • Schmidt CF, Baermann M, Isenberg G, Sackmann E (1989) Chain dynamics, mesh size, and diffusive transport in networks of polymerized actin. A quasielastic light scattering and microfluorescence study. Macromolecules 22:3638–3649

    Google Scholar 

  • Sokabe M, Sachs F, Jing Z (1991) Quantitative videomicroscopy of patch clamped membranes stress, strain, capacitance, and stretch channel activation. Biophys J 59:722–728

    Google Scholar 

  • Szekely JG, Morash BD (1980) The effect of temperature on capacitance changes in an oscillating model membrane. Biochim Biophys Acta 559:73–80

    Google Scholar 

  • Todorov AT, Petrov AG, Brandt MO, Fendler JH (1991) Electrical and real-time stroboscopic interferometric measurements of bilayer lipid membrane flexoelectricity. Langmuir 7:3127–3137

    Google Scholar 

  • Waugh R, Evans E (1979) Thermoelasticity of red blood cell membrane. Biophys J 26:115–132

    Google Scholar 

  • Zhou X-L, Kung C (1992) A mechanosensitive ion channel in Schizosaccharomices pombe. The EMBO J 11:2869–2875

    Google Scholar 

  • Zeman K, Engelhard H, Sackmann E (1990) Bending undulations and elasticity of erythrocyte membrane: effects of cell shape and membrane organization. Eur Biophys J 18:203–209

    Google Scholar 

  • Zilker A, Engelhardt H, Sackmann E (1987) Dynamic reflection interference contrast (RIC-) microscopy: a new method to study surface excitations of cells and to measure membrane bending elastic moduli. J Phys 48:2139–2151

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to Professor Alexander Derzhanski on the occasion of his 60th birthday

Correspondence to: A. G. Petrov

Rights and permissions

Reprints and permissions

About this article

Cite this article

Petrov, A.G., Usherwood, P.N.R. Mechanosensitivity of cell membranes. Eur Biophys J 23, 1–19 (1994). https://doi.org/10.1007/BF00192201

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00192201

Key words

Navigation