Skip to main content

Principles of Mechanosensing at the Membrane Interface

  • Chapter
  • First Online:
The Biophysics of Cell Membranes

Part of the book series: Springer Series in Biophysics ((BIOPHYSICS,volume 19))

Abstract

Mechanotransduction is a general term for all physiological processes through which living cells sense and respond to external and/or internal mechanical stimuli. These stimuli are converted into electrochemical intracellular signals via various mechanosensory transducers eliciting specific cellular responses. Among the many molecular mechanosensors found in living cells, mechanosensitive (MS) ion channels form a group of the fastest signaling molecules essential for cellular mechanotransduction. In this chapter, we discuss the basic principles of ion channel mechanosensitivity and highlight the importance of the surrounding lipid bilayer, cytoskeleton and extracellular matrix. We also discuss how these facets of channel mechanosensitivity may be reduced to changes of the transbilayer pressure profile and MS channel conformations that mutually affect each other according to the ‘force-from-lipids’ paradigm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hamill OP, Martinac B (2001) Molecular basis of mechanotransduction in living cells. Physiol Rev 81:685–740

    CAS  PubMed  Google Scholar 

  2. Hamilton ES, Schlegel AM, Haswell ES (2015) United in diversity: mechanosensitive ion channels in plants. Annu Rev Plant Biol 66:113–137. doi:10.1146/annurev-arplant-043014-114700

    Article  CAS  PubMed  Google Scholar 

  3. Haswell ES, Verslues PE (2015) The ongoing search for the molecular basis of plant osmosensing. J Gen Physiol 145:389–394. doi:10.1085/jgp.201411295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Monshausen GB, Haswell ES (2013) A force of nature: molecular mechanisms of mechanoperception in plants. J Exp Bot 64:4663–4680. doi:10.1093/jxb/ert204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Martinac B, Cox CD (2016) Mechanosensory transduction: focus on ion channels. In: Comprehensive biophysics. Elsevier

    Google Scholar 

  6. Ranade SS, Syeda R, Patapoutian A (2015) Mechanically activated ion channels. Neuron 87:1162–1179. doi:10.1016/j.neuron.2015.08.032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Nilius B, Honore E (2012) Sensing pressure with ion channels. Trends Neurosci 35:477–486. doi:10.1016/j.tins.2012.04.002

    Article  CAS  PubMed  Google Scholar 

  8. Arnadottir J, Chalfie M (2010) Eukaryotic mechanosensitive channels. Annu Rev Biophys 39:111–137. doi:10.1146/annurev.biophys.37.032807.125836

    Article  CAS  PubMed  Google Scholar 

  9. Chalfie M (2009) Neurosensory mechanotransduction. Nat Rev Mol Cell Biol 10:44–52., doi:nrm2595 [pii]10.1038/nrm2595

    Article  CAS  PubMed  Google Scholar 

  10. Kocer A (2015) Mechanisms of mechanosensing - mechanosensitive channels, function and re-engineering. Curr Opin Chem Biol 29:120–127. doi:10.1016/j.cbpa.2015.10.006

    Article  CAS  PubMed  Google Scholar 

  11. Nikolaev YA, Dosen PJ, Laver DR, Van Helden DF, Hamill OP (2016) Biophysical factors that promote mechanically-induced action potentials in neocortical and hippocampal pyramidal neurons. Biophys J 110(3):349a

    Article  Google Scholar 

  12. Vollrath MA, Kwan KY, Corey DP (2007) The micromachinery of mechanotransduction in hair cells. Annu Rev Neurosci 30:339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Fettiplace R, Kim KX (2014) The physiology of mechanoelectrical transduction channels in hearing. Physiol Rev 94:951–986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Pruitt BL, Dunn AR, Weis WI, Nelson WJ (2014) Mechano-transduction: from molecules to tissues. PLoS Biol 12:e1001996

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Moeendarbary E, Harris AR (2014) Cell mechanics: principles, practices, and prospects. Wiley Interdiscip Rev Syst Biol Med 6:371–388

    Article  PubMed  PubMed Central  Google Scholar 

  16. Iadecola C, Davisson RL (2008) Hypertension and cerebrovascular dysfunction. Cell Metab 7:476–484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Intengan HD, Schiffrin EL (2001) Vascular remodeling in hypertension roles of apoptosis, inflammation, and fibrosis. Hypertension 38:581–587

    Article  CAS  PubMed  Google Scholar 

  18. Martinac B (2012) Mechanosensitive ion channels: an evolutionary and scientific tour de force in mechanobiology. Channels (Austin) 6:211–213. doi:10.4161/chan.22047

    Article  Google Scholar 

  19. Wang W et al (2010) Fluid shear stress stimulates phosphorylation-dependent nuclear export of HDAC5 and mediates expression of KLF2 and eNOS. Blood 115:2971–2979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Na S et al (2008) Rapid signal transduction in living cells is a unique feature of mechanotransduction. Proc Natl Acad Sci 105:6626–6631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Morris CE, Horn R (1991) Failure to elicit neuronal macroscopic mechanosensitive currents anticipated by single-channel studies. Science 251:1246–1249

    Article  CAS  PubMed  Google Scholar 

  22. Honore E, Martins JR, Penton D, Patel A, Demolombe S (2015) The piezo mechanosensitive ion channels: may the force be with you! Rev Physiol Biochem Pharmacol 169:25–41. doi:10.1007/112_2015_26

    Article  CAS  PubMed  Google Scholar 

  23. Freund JB, Vermot J (2014) The wall-stress footprint of blood cells flowing in microvessels. Biophys J 106:752–762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Woo SH et al (2015) Piezo2 is the principal mechanotransduction channel for proprioception. Nat Neurosci 18:1756–1762. doi:10.1038/nn.4162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Nikolaev YA, Dosen PJ, Laver DR, van Helden DF, Hamill OP (2015) Single mechanically-gated cation channel currents can trigger action potentials in neocortical and hippocampal pyramidal neurons. Brain Res 1608:1–13. doi:10.1016/j.brainres.2015.02.051

    Article  CAS  PubMed  Google Scholar 

  26. Jensen MO, Mouritsen OG (2004) Lipids do influence protein function-the hydrophobic matching hypothesis revisited. Biochim Biophys Acta 1666:205–226. doi:10.1016/j.bbamem.2004.06.009

    Article  CAS  PubMed  Google Scholar 

  27. Marsh D (2007) Lateral pressure profile, spontaneous curvature frustration, and the incorporation and conformation of proteins in membranes. Biophys J 93:3884–3899. doi:10.1529/biophysj.107.107938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Cantor RS (1998) The lateral pressure profile in membranes: a physical mechanism of general anesthesia. Toxicol Lett 100-101:451–458

    Article  CAS  PubMed  Google Scholar 

  29. Anishkin A, Loukin SH, Teng J, Kung C (2014) Feeling the hidden mechanical forces in lipid bilayer is an original sense. Proc Natl Acad Sci U S A 111:7898. doi:10.1073/pnas.1313364111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kung C, Martinac B, Sukharev S (2010) Mechanosensitive channels in microbes. Annu Rev Microbiol 64:313–329. doi:10.1146/annurev.micro.112408.134106

    Article  CAS  PubMed  Google Scholar 

  31. Brohawn SG, Su Z, MacKinnon R (2014) Mechanosensitivity is mediated directly by the lipid membrane in TRAAK and TREK1 K+ channels. Proc Natl Acad Sci U S A 111:3614–3619. doi:10.1073/pnas.1320768111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Cox CD, Bavi N, Martinac B (2017) Origin of the force: the force-from-lipids principle applied to piezo channels. Curr Top Membr 79:59–96

    Google Scholar 

  33. Fettiplace R (2016) Is TMC1 the hair cell Mechanotransducer Channel? Biophys J 111:3–9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Beurg M, Kim KX, Fettiplace R (2014) Conductance and block of hair-cell mechanotransducer channels in transmembrane channel-like protein mutants. J Gen Physiol 144:55–69. doi:10.1085/jgp.201411173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Poole K, Moroni M, Lewin GR (2015) Sensory mechanotransduction at membrane-matrix interfaces. Pflugers Arch 467:121–132. doi:10.1007/s00424-014-1563-6

    Article  CAS  PubMed  Google Scholar 

  36. Servin-Vences MR, Moroni M, Lewin GR, Poole K (2017) Direct measurement of TRPV4 and PIEZO1 activity reveals multiple mechanotransduction pathways in chondrocytes. elife 6:e21074

    Google Scholar 

  37. Mukherjee N et al (2014) The activation mode of the mechanosensitive ion channel, MscL, by lysophosphatidylcholine differs from tension-induced gating. FASEB J 28:4292–4302. doi:10.1096/fj.14-251579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Katta S, Krieg M, Goodman MB (2015) Feeling force: physical and physiological principles enabling sensory mechanotransduction. Annu Rev Cell Dev Biol 31:347–371. doi:10.1146/annurev-cellbio-100913-013426

    Article  CAS  PubMed  Google Scholar 

  39. Martinac B (2013) The ion channels to cytoskeleton connection as potential mechanism of mechanosensitivity. Biochim Biophys Acta 1838:682. doi:10.1016/j.bbamem.2013.07.015

    Article  PubMed  CAS  Google Scholar 

  40. Pivetti CD et al (2003) Two families of mechanosensitive channel proteins. Microbiol Mol Biol Rev 67, 66–85, table of contents

    Google Scholar 

  41. Berrier C, Besnard M, Ajouz B, Coulombe A, Ghazi A (1996) Multiple mechanosensitive ion channels from Escherichia coli, activated at different thresholds of applied pressure. J Membr Biol 151:175–187. doi:10.1007/s002329900068

    Article  CAS  PubMed  Google Scholar 

  42. Perozo E, Rees DC (2003) Structure and mechanism in prokaryotic mechanosensitive channels. Curr Opin Struct Biol 13:432–442

    Article  CAS  PubMed  Google Scholar 

  43. Schumann U et al (2010) YbdG in Escherichia Coli is a threshold-setting mechanosensitive channel with MscM activity. Proc Natl Acad Sci U S A 107:12664–12669. doi:10.1073/pnas.1001405107

    Article  PubMed  PubMed Central  Google Scholar 

  44. Prager-Khoutorsky M, Khoutorsky A, Bourque CW (2014) Unique interweaved microtubule scaffold mediates osmosensory transduction via physical interaction with TRPV1. Neuron 83:866–878. doi:10.1016/j.neuron.2014.07.023

    Article  CAS  PubMed  Google Scholar 

  45. Teng J, Loukin SH, Anishkin A, Kung C (2015) L596-W733 bond between the start of the S4-S5 linker and the TRP box stabilizes the closed state of TRPV4 channel. Proc Natl Acad Sci U S A 112:3386–3391. doi:10.1073/pnas.1502366112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Huynh KW et al (2016) Structure of the full-length TRPV2 channel by cryo-EM. Nat Commun 7:11130. doi:10.1038/ncomms11130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Zhang W et al (2015) Ankyrin repeats convey force to gate the NOMPC Mechanotransduction Channel. Cell 162:1391–1403. doi:10.1016/j.cell.2015.08.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ronan D, Gillespie P (2005) Metazoan mechanotransduction mystery finally solved. Nat Neurosci 8:7–8

    Article  CAS  PubMed  Google Scholar 

  49. Gillespie PG, Muller U (2009) Mechanotransduction by hair cells: models, molecules, and mechanisms. Cell 139:33–44. doi:10.1016/j.cell.2009.09.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Nilius B, Voets T (2013) The puzzle of TRPV4 channelopathies. EMBO Rep 14:152–163. doi:10.1038/embor.2012.219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Albuisson J et al (2013) Dehydrated hereditary stomatocytosis linked to gain-of-function mutations in mechanically activated PIEZO1 ion channels. Nat Commun 4:1884. doi:10.1038/ncomms2899

    PubMed  PubMed Central  Google Scholar 

  52. Peyronnet R, Nerbonne JM, Kohl P (2016) Cardiac Mechano-Gated Ion Channels and Arrhythmias. Circ Res 118:311–329. doi:10.1161/CIRCRESAHA.115.305043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Seo K et al (2014) Combined TRPC3 and TRPC6 blockade by selective small-molecule or genetic deletion inhibits pathological cardiac hypertrophy. Proc Natl Acad Sci U S A 111:1551–1556. doi:10.1073/pnas.1308963111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Zubcevic L et al (2016) Cryo-electron microscopy structure of the TRPV2 ion channel. Nat Struct Mol Biol 23:180–186. doi:10.1038/nsmb.3159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Liao M, Cao E, Julius D, Cheng Y (2013) Structure of the TRPV1 ion channel determined by electron cryo-microscopy. Nature 504:107–112. doi:10.1038/nature12822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Martinac B, Adler J, Kung C (1990) Mechanosensitive ion channels of E. coli activated by amphipaths. Nature 348:261–263. doi:10.1038/348261a0

    Article  CAS  PubMed  Google Scholar 

  57. Markin VS, Martinac B (1991) Mechanosensitive ion channels as reporters of bilayer expansion. A theoretical model Biophys J 60:1120–1127. doi:10.1016/S0006-3495(91)82147-6

    CAS  PubMed  Google Scholar 

  58. Anishkin A, Kung C (2013) Stiffened lipid platforms at molecular force foci. Proc Natl Acad Sci U S A 110:4886–4892. doi:10.1073/pnas.1302018110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Teng J, Loukin S, Anishkin A, Kung C (2015) The force-from-lipid (FFL) principle of mechanosensitivity, at large and in elements. Pflugers Arch 467:27. doi:10.1007/s00424-014-1530-2

    Article  CAS  PubMed  Google Scholar 

  60. Cox CD, Nakayama Y, Nomura T, Martinac B (2015) The evolutionary 'tinkering' of MscS-like channels: generation of structural and functional diversity. Pflugers Arch 467:3. doi:10.1007/s00424-014-1522-2

    Article  CAS  PubMed  Google Scholar 

  61. Sukharev SI, Blount P, Martinac B, Blattner FR, Kung C (1994) A large-conductance mechanosensitive channel in E. coli encoded by mscL alone. Nature 368:265–268. doi:10.1038/368265a0

    Article  CAS  PubMed  Google Scholar 

  62. Sukharev S (2002) Purification of the small mechanosensitive channel of Escherichia coli (MscS): the subunit structure, conduction, and gating characteristics in liposomes. Biophys J 83:290–298. doi:10.1016/S0006-3495(02)75169-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Hase CC, Le Dain AC, Martinac B (1995) Purification and functional reconstitution of the recombinant large mechanosensitive ion channel (MscL) of Escherichia Coli. J Biol Chem 270:18329–18334

    Article  CAS  PubMed  Google Scholar 

  64. Koprowski P et al (2015) Cytoplasmic domain of MscS interacts with cell division protein FtsZ: a possible Non-Channel function of the Mechanosensitive Channel in Escherichia Coli. PLoS One 10:e0127029. doi:10.1371/journal.pone.0127029

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Delcour AH, Martinac B, Adler J, Kung C (1989) Modified reconstitution method used in patch-clamp studies of Escherichia Coli ion channels. Biophys J 56:631–636. doi:10.1016/S0006-3495(89)82710-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Sukharev SI, Martinac B, Arshavsky VY, Kung C (1993) Two types of mechanosensitive channels in the Escherichia Coli cell envelope: solubilization and functional reconstitution. Biophys J 65:177–183. doi:10.1016/S0006-3495(93)81044-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Brohawn SG, Campbell EB, MacKinnon R (2014) Physical mechanism for gating and mechanosensitivity of the human TRAAK K+ channel. Nature 516:126–130. doi:10.1038/nature14013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Berrier C et al (2013) The purified mechanosensitive channel TREK-1 is directly sensitive to membrane tension. J Biol Chem 288:27307–27314. doi:10.1074/jbc.M113.478321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Dong YY et al (2015) K2P channel gating mechanisms revealed by structures of TREK-2 and a complex with Prozac. Science 347:1256–1259. doi:10.1126/science.1261512

    Article  CAS  PubMed  Google Scholar 

  70. Syeda R et al (2016) Piezo1 channels are inherently mechanosensitive. Cell Rep 17:1739–1746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Cox CD et al (2016) Removal of the mechanoprotective influence of the cytoskeleton reveals PIEZO1 is gated by bilayer tension. Nat Commun 7:10366. doi:10.1038/ncomms10366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Ge J et al (2015) Architecture of the mammalian mechanosensitive Piezo1 channel. Nature 527:64–69. doi:10.1038/nature15247

    Article  CAS  PubMed  Google Scholar 

  73. Ranade SS et al (2014) Piezo1, a mechanically activated ion channel, is required for vascular development in mice. Proc Natl Acad Sci 111:10347–10352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Li J et al (2014) Piezo1 integration of vascular architecture with physiological force. Nature 515:279–282. doi:10.1038/nature13701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Retailleau K et al (2015) Piezo1 in smooth muscle cells is involved in hypertension-dependent arterial remodeling. Cell Rep 13:1161–1171. doi:10.1016/j.celrep.2015.09.072

    Article  CAS  PubMed  Google Scholar 

  76. Cahalan SM et al (2015) Piezo1 links mechanical forces to red blood cell volume. Elife 4. doi:10.7554/eLife.07370

  77. Eisenhoffer GT et al (2012) Crowding induces live cell extrusion to maintain homeostatic cell numbers in epithelia. Nature 484:546–549. doi:10.1038/nature10999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Gudipaty SA et al (2017) Mechanical stretch triggers rapid epithelial cell division through Piezo1. Nature 543:118–121. doi:10.1038/nature21407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Martins JR et al (2016) Piezo1-dependent regulation of urinary osmolarity. Pflügers Archiv-European Journal of Physiology 468:1197–1206

    Article  CAS  PubMed  Google Scholar 

  80. Wang S et al (2016) Endothelial cation channel PIEZO1 controls blood pressure by mediating flow-induced ATP release. J Clin Invest 126:4527–4536. doi:10.1172/JCI87343

    Article  PubMed  PubMed Central  Google Scholar 

  81. Lukacs V et al (2015) Impaired PIEZO1 function in patients with a novel autosomal recessive congenital lymphatic dysplasia. Nat Commun 6:8329. doi:10.1038/ncomms9329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Pathak MM et al (2014) Stretch-activated ion channel Piezo1 directs lineage choice in human neural stem cells. Proc Natl Acad Sci U S A 111:16148–16153. doi:10.1073/pnas.1409802111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Koser DE et al (2016) Mechanosensing is critical for axon growth in the developing brain. Nat Neurosci 19:1592–1598. doi:10.1038/nn.4394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Hulce JJ, Cognetta AB, Niphakis MJ, Tully SE, Cravatt BF (2013) Proteome-wide mapping of cholesterol-interacting proteins in mammalian cells. Nat Methods 10:259–264. doi:10.1038/nmeth.2368

    Article  PubMed  PubMed Central  Google Scholar 

  85. Qi Y et al (2015) Membrane stiffening by STOML3 facilitates mechanosensation in sensory neurons. Nat Commun 6:8512. doi:10.1038/ncomms9512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Wu J, Goyal R, Grandl J (2016) Localized force application reveals mechanically sensitive domains of Piezo1. Nat Commun 7:12939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Armstrong CM, Bezanilla F (1977) Inactivation of the sodium channel. II. Gating current experiments. J Gen Physiol 70:567–590

    Article  CAS  PubMed  Google Scholar 

  88. Honore E, Patel AJ, Chemin J, Suchyna T, Sachs F (2006) Desensitization of mechano-gated K2P channels. Proc Natl Acad Sci U S A 103:6859–6864. doi:10.1073/pnas.0600463103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Poole K, Herget R, Lapatsina L, Ngo HD, Lewin GR (2014) Tuning piezo ion channels to detect molecular-scale movements relevant for fine touch. Nat Commun 5:3520. doi:10.1038/ncomms4520

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Peyronnet R et al (2012) Mechanoprotection by polycystins against apoptosis is mediated through the opening of stretch-activated K(2P) channels. Cell Rep 1:241–250. doi:10.1016/j.celrep.2012.01.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Nonomura K et al (2017) Piezo2 senses airway stretch and mediates lung inflation-induced apnoea. Nature 541:176–181. doi:10.1038/nature20793

    Article  CAS  PubMed  Google Scholar 

  92. Zheng J (2013) Molecular mechanism of TRP channels. Compr Physiol 3:221–242. doi:10.1002/cphy.c120001

    PubMed  PubMed Central  Google Scholar 

  93. O'Conor CJ, Leddy HA, Benefield HC, Liedtke WB, Guilak F (2014) TRPV4-mediated mechanotransduction regulates the metabolic response of chondrocytes to dynamic loading. Proc Natl Acad Sci U S A 111:1316–1321. doi:10.1073/pnas.1319569111

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Lieben L, Carmeliet G (2012) The involvement of TRP channels in bone homeostasis. Front Endocrinol (Lausanne) 3:99. doi:10.3389/fendo.2012.00099

    Google Scholar 

  95. Loukin S, Zhou X, Su Z, Saimi Y, Kung C (2010) Wild-type and brachyolmia-causing mutant TRPV4 channels respond directly to stretch force. J Biol Chem 285:27176–27181. doi:10.1074/jbc.M110.143370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Liedtke W et al (2000) Vanilloid receptor-related osmotically activated channel (VR-OAC), a candidate vertebrate osmoreceptor. Cell 103:525–535., doi:S0092–8674(00)00143–4 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Sabass B, Stone HA (2016) Role of the membrane for mechanosensing by tethered channels. Phys Rev Lett 16(25):258101. arXiv preprint arXiv:1603.05751

    Article  CAS  Google Scholar 

  98. Pan B et al (2013) TMC1 and TMC2 are components of the mechanotransduction channel in hair cells of the mammalian inner ear. Neuron 79:504–515. doi:10.1016/j.neuron.2013.06.019

    Article  CAS  PubMed  Google Scholar 

  99. Kim KX, Fettiplace R (2013) Developmental changes in the cochlear hair cell mechanotransducer channel and their regulation by transmembrane channel-like proteins. J Gen Physiol 141:141–148. doi:10.1085/jgp.201210913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Gao X et al (2013) Novel compound heterozygous TMC1 mutations associated with autosomal recessive hearing loss in a Chinese family. PLoS One 8:e63026. doi:10.1371/journal.pone.0063026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Kawashima Y, Kurima K, Pan B, Griffith AJ, Holt JR (2015) Transmembrane channel-like (TMC) genes are required for auditory and vestibular mechanosensation. Pflugers Arch 467:85–94. doi:10.1007/s00424-014-1582-3

    Article  CAS  PubMed  Google Scholar 

  102. Chatzigeorgiou M, Bang S, Hwang SW, Schafer WR (2013) Tmc-1 encodes a sodium-sensitive channel required for salt chemosensation in C. elegans. Nature 494:95–99. doi:10.1038/nature11845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Sotomayor M, Weihofen WA, Gaudet R, Corey DP (2012) Structure of a force-conveying cadherin bond essential for inner-ear mechanotransduction. Nature 492:128–132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Delling M et al (2016) Primary cilia are not calcium-responsive mechanosensors. Nature 531:656–660. doi:10.1038/nature17426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Hudspeth A (2014) Integrating the active process of hair cells with cochlear function. Nat Rev Neurosci 15:600–614

    Article  CAS  PubMed  Google Scholar 

  106. Zhao B, Müller U (2015) The elusive mechanotransduction machinery of hair cells. Curr Opin Neurobiol 34:172–179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Zhang W, Yan Z, Jan LY, Jan YN (2013) Sound response mediated by the TRP channels NOMPC, NANCHUNG, and INACTIVE in chordotonal organs of drosophila larvae. Proc Natl Acad Sci U S A 110:13612–13617. doi:10.1073/pnas.1312477110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Yan Z et al (2013) Drosophila NOMPC is a mechanotransduction channel subunit for gentle-touch sensation. Nature 493:221–225. doi:10.1038/nature11685

    Article  CAS  PubMed  Google Scholar 

  109. Gao Y, Cao E, Julius D, Cheng Y (2016) TRPV1 structures in nanodiscs reveal mechanisms of ligand and lipid action. Nature 534:347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. O’Hagan R, Chalfie M, Goodman MB (2005) The MEC-4 DEG/ENaC channel of Caenorhabditis elegans touch receptor neurons transduces mechanical signals. Nature Neurosci 8:43–50

    Article  PubMed  CAS  Google Scholar 

  111. Kellenberger S, Schild L (2002) Epithelial sodium channel/degenerin family of ion channels: a variety of functions for a shared structure. Physiol Rev 82:735–767. doi:10.1152/physrev.00007.2002

    Article  CAS  PubMed  Google Scholar 

  112. Stockand JD (2015) In: Zheng J, Trudeau MC (eds) Handbook of Ion channels Ch. 26. Taylor & Francis Group, Boca Raton

    Google Scholar 

  113. Ross S, Fuller CM, Bubien JK, Benos DJ (2007) Amiloride-sensitive Na channels contribute to regulatory volume increases in human glioma cells. Am J Physiol Cell Physiol 293:C1181–C1185

    Article  CAS  PubMed  Google Scholar 

  114. Eastwood AL et al (2015) Tissue mechanics govern the rapidly adapting and symmetrical response to touch. Proc Natl Acad Sci U S A 112:E6955–E6963. doi:10.1073/pnas.1514138112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Hill K, Schaefer M (2007) TRPA1 is differentially modulated by the amphipathic molecules trinitrophenol and chlorpromazine. J Biol Chem 282:7145–7153

    Article  CAS  PubMed  Google Scholar 

  116. Perozo E, Kloda A, Cortes DM, Martinac B (2002) Physical principles underlying the transduction of bilayer deformation forces during mechanosensitive channel gating. Nat Struct Biol 9:696–703. doi:10.1038/nsb827

    Article  CAS  PubMed  Google Scholar 

  117. Atkins P, De Paula J (2011) Physical chemistry for the life sciences. Oxford University Press, Oxford

    Google Scholar 

  118. Maksaev G, Milac A, Anishkin A, Guy HR, Sukharev S (2011) Analyses of gating thermodynamics and effects of deletions in the mechanosensitive channel TREK-1: comparisons with structural models. Channels (Austin) 5:34–42

    Article  CAS  Google Scholar 

  119. Sukharev SI, Sigurdson WJ, Kung C, Sachs F (1999) Energetic and spatial parameters for gating of the bacterial large conductance mechanosensitive channel. MscL J Gen Physiol 113:525–540

    Article  CAS  PubMed  Google Scholar 

  120. Sukharev S, Corey DP (2004) Mechanosensitive channels: multiplicity of families and gating paradigms. Sci STKE 2004:re4. doi:10.1126/stke.2192004re4

    PubMed  Google Scholar 

  121. Phillips R, Ursell T, Wiggins P, Sens P (2009) Emerging roles for lipids in shaping membrane-protein function. Nature 459:379–385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Battle AR et al (2015) Lipid–protein interactions: Lessons learned from stress. Biochimica et Biophysica Acta (BBA)-Biomembranes 1848:1744–1756

    Article  CAS  Google Scholar 

  123. Boal D, Boal DH (2012) Mechanics of the cell. Cambridge University Press, Cambridge

    Book  Google Scholar 

  124. Gruenheid S, Finlay BB (2003) Microbial pathogenesis and cytoskeletal function. Nature 422:775–781

    Article  CAS  PubMed  Google Scholar 

  125. Bertaud J, Hester J, Jimenez DD, Buehler MJ (2009) Energy landscape, structure and rate effects on strength properties of alpha-helical proteins. J Phys Condens Matter 22:035102

    Article  PubMed  CAS  Google Scholar 

  126. Rodriguez ML, McGarry PJ, Sniadecki NJ (2013) Review on cell mechanics: experimental and modeling approaches. Appl Mech Rev 65:060801

    Article  Google Scholar 

  127. Pliotas C et al (2015) The role of lipids in mechanosensation. Nat Struct Mol Biol 22:991–998. doi:10.1038/nsmb.3120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Bavi N, Cox CD, Perozo E, Martinac B (2016) Toward a structural blueprint for bilayer-mediated channel mechanosensitivity. Channels 11(2):91–93

    Google Scholar 

  129. Bavi N et al (2014) Biophysical implications of lipid bilayer rheometry for mechanosensitive channels. Proc Natl Acad Sci U S A 111:13864–13869. doi:10.1073/pnas.1409011111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Laganowsky A et al (2014) Membrane proteins bind lipids selectively to modulate their structure and function. Nature 510:172–175. doi:10.1038/nature13419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Zhong D, Blount P (2013) Phosphatidylinositol is crucial for the mechanosensitivity of Mycobacterium tuberculosis MscL. Biochemistry 52:5415–5420. doi:10.1021/bi400790j

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Cantor RS (1999) Lipid composition and the lateral pressure profile in membranes. Biophys J 76:A58–A58

    Article  Google Scholar 

  133. Cantor RS (1999) Lipid composition and the lateral pressure profile in bilayers. Biophys J 76:2625–2639. doi:10.1016/S0006-3495(99)77415-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Cantor RS (2000) Membrane composition and the lateral pressure profile. Biophys J 78:329a

    Google Scholar 

  135. Evans E, Rawicz W, Smith B (2013) Concluding remarks back to the future: mechanics and thermodynamics of lipid biomembranes. Faraday Discuss 161:591–611

    Article  CAS  PubMed  Google Scholar 

  136. Nomura T et al (2012) Differential effects of lipids and lyso-lipids on the mechanosensitivity of the mechanosensitive channels MscL and MscS. Proc Natl Acad Sci U S A 109:8770–8775. doi:10.1073/pnas.1200051109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Mukhin SI, Baoukina S (2005) Analytical derivation of thermodynamic characteristics of lipid bilayer from a flexible string model. Phys Rev E 71:061918

    Article  CAS  Google Scholar 

  138. Evans E, Rawicz W, Smith BA (2013) Back to the future: mechanics and thermodynamics of lipid biomembranes. Faraday Discuss 161:591–611

    Article  CAS  PubMed  Google Scholar 

  139. Gullingsrud J, Schulten K (2004) Lipid bilayer pressure profiles and mechanosensitive channel gating. Biophys J 86:3496–3509. doi:10.1529/biophysj.103.034322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Cantor RS (1997) The lateral pressure profile in membranes: a physical mechanism of general anesthesia. Biochemistry 36:2339–2344. doi:10.1021/bi9627323

    Article  CAS  PubMed  Google Scholar 

  141. Bavi N et al (2016) The role of MscL amphipathic N terminus indicates a blueprint for bilayer-mediated gating of mechanosensitive channels. Nat Commun 7:11984. doi:10.1038/ncomms11984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Lee AG (2004) How lipids affect the activities of integral membrane proteins. Biochim Biophys Acta 1666:62–87. doi:10.1016/j.bbamem.2004.05.012

    Article  CAS  PubMed  Google Scholar 

  143. Lundbaek JA, Collingwood SA, Ingolfsson HI, Kapoor R, Andersen OS (2010) Lipid bilayer regulation of membrane protein function: gramicidin channels as molecular force probes. J R Soc Interface 7:373–395. doi:10.1098/rsif.2009.0443

    Article  CAS  PubMed  Google Scholar 

  144. Gullingsrud J, Schulten K (2003) Gating of MscL studied by steered molecular dynamics. Biophys J 85:2087–2099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Gullingsrud J, Kosztin D, Schulten K (2001) Structural determinants of MscL gating studied by molecular dynamics simulations. Biophys J 80:2074–2081. doi:10.1016/S0006-3495(01)76181-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Templer R, Castle S, Curran A, Klug D (1999) Sensing isothermal changes in the lateral pressure in model membranes using di-pyrenyl phosphatidylcholine. Faraday Discuss 111:41–53

    Article  Google Scholar 

  147. Gawrisch K, Holte LL (1996) NMR investigations of non-lamellar phase promoters in the lamellar phase state. Chem Phys Lipids 81:105–116

    Article  CAS  Google Scholar 

  148. Cantor RS (1997) Membrane lateral pressures: a physical mechanism of general anesthesia. Biophys J 72:Mpo98

    Google Scholar 

  149. Cantor RS (1996) Theory of lipid monolayers comprised of mixtures of flexible and stiff amphiphiles in athermal solvents: fluid phase coexistence. J Chem Phys 104:8082–8095. doi:10.1063/1.471524

    Article  CAS  Google Scholar 

  150. Harries D, Ben-Shaul A (1997) Conformational chain statistics in a model lipid bilayer: comparison between mean field and Monte Carlo calculations. J Chem Phys 106:1609–1619

    Article  CAS  Google Scholar 

  151. Lindahl E, Edholm O (2000) Spatial and energetic-entropic decomposition of surface tension in lipid bilayers from molecular dynamics simulations. J Chem Phys 113:3882–3893

    Article  CAS  Google Scholar 

  152. Baoukina S, Marrink SJ, Tieleman DP (2010) Lateral pressure profiles in lipid monolayers. Faraday Discuss 144:393–409

    Article  CAS  PubMed  Google Scholar 

  153. Yoo J, Cui Q (2009) Curvature generation and pressure profile modulation in membrane by lysolipids: insights from coarse-grained simulations. Biophys J 97:2267–2276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Elmore DE, Dougherty DA (2003) Investigating lipid composition effects on the mechanosensitive channel of large conductance (MscL) using molecular dynamics simulations. Biophys J 85:1512–1524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Markin VS, Sachs F (2004) Thermodynamics of mechanosensitivity. Phys Biol 1:110–124. doi:10.1088/1478-3967/1/2/007

    Article  CAS  PubMed  Google Scholar 

  156. Wiggins P, Phillips R (2005) Membrane-protein interactions in mechanosensitive channels. Biophys J 88:880–902. doi:10.1529/biophysj.104.047431

    Article  CAS  PubMed  Google Scholar 

  157. Wiggins P, Phillips R (2004) Analytic models for mechanotransduction: gating a mechanosensitive channel. Proc Natl Acad Sci 101:4071–4076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Zhan H, Lazaridis T (2013) Inclusion of lateral pressure/curvature stress effects in implicit membrane models. Biophys J 104:643–654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Im W, Feig M, Brooks CL (2003) An implicit membrane generalized born theory for the study of structure, stability, and interactions of membrane proteins. Biophys J 85:2900–2918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Bavi O, Vossoughi M, Naghdabadi R, Jamali Y (2014) The effect of local bending on gating of MscL using a representative volume element and finite element simulation. Channels 8:0–1

    Article  Google Scholar 

  161. Sonne J, Hansen FY, Peters GH (2005) Methodological problems in pressure profile calculations for lipid bilayers. J Chem Phys 122:124903

    Article  PubMed  CAS  Google Scholar 

  162. Berendsen HJ, van der Spoel D, van Drunen R (1995) GROMACS: a message-passing parallel molecular dynamics implementation. Comput Phys Commun 91:43–56

    Article  CAS  Google Scholar 

  163. Lindahl E, Hess B, Van Der Spoel D (2001) GROMACS 3.0: a package for molecular simulation and trajectory analysis. J Mol Model 7:306–317

    Article  CAS  Google Scholar 

  164. Phillips JC et al (2005) Scalable molecular dynamics with NAMD. J Comput Chem 26:1781–1802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Sansom MS, Scott KA, Bond PJ (2008) Coarse-grained simulation: a high-throughput computational approach to membrane proteins. Biochem Soc Trans 36:27–32

    Article  CAS  PubMed  Google Scholar 

  166. Sansom M, Hedger G (2016) Lipid interaction sites on channels, transporters and receptors: recent insights from molecular dynamics simulations. BBA-Biomembranes 1858(10):2390–2400

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  167. Zhuang X, Dávila-Contreras EM, Beaven AH, Im W, Klauda JB (2016) An extensive simulation study of lipid bilayer properties with different head groups, acyl chain lengths, and chain saturations. Biochimica et Biophysica Acta (BBA)-Biomembranes 1858:3093–3104

    Article  CAS  Google Scholar 

  168. Pavlova A, Hwang H, Lundquist K, Balusek C, Gumbart JC (2016) Living on the edge: simulations of bacterial outer-membrane proteins. Biochimica et Biophysica Acta (BBA)-Biomembranes 1858:1753–1759

    Article  CAS  Google Scholar 

  169. Pandit KR, Klauda JB (2012) Membrane models of E. coli containing cyclic moieties in the aliphatic lipid chain. Biochimica et Biophysica Acta (BBA)-Biomembranes 1818:1205–1210

    Article  CAS  Google Scholar 

  170. Masetti M et al (2016) Multiscale simulations of a two-pore potassium channel. J Chem Theory Comput 12:5681–5687

    Article  CAS  PubMed  Google Scholar 

  171. Jo S, Lim JB, Klauda JB, Im W (2009) CHARMM-GUI membrane builder for mixed bilayers and its application to yeast membranes. Biophys J 97:50–58

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Lim JB, Klauda JB (2011) Lipid chain branching at the iso-and anteiso-positions in complex chlamydia membranes: a molecular dynamics study. Biochimica et Biophysica Acta (BBA)-Biomembranes 1808:323–331

    Article  CAS  Google Scholar 

  173. Ingólfsson HI et al (2014) Lipid organization of the plasma membrane. J Am Chem Soc 136:14554–14559

    Article  PubMed  CAS  Google Scholar 

  174. Bavi N et al (2016) Nanomechanical properties of MscL alpha helices: a steered molecular dynamics study. Channels 11(3):209–223

    Google Scholar 

  175. Anishkin A, Sukharev S (2017) Channel disassembled: pick, tweak, and soak parts to soften. Channels 11(3):173–175

    Article  PubMed  Google Scholar 

  176. Bavi O, Vossoughi M, Naghdabadi R, Jamali Y (2016) The combined effect of hydrophobic mismatch and bilayer local bending on the regulation of mechanosensitive ion channels. PLoS One 11:e0150578. doi:10.1371/journal.pone.0150578

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  177. Zhu L et al (2016) Gating mechanism of mechanosensitive channel of large conductance: a coupled continuum mechanical-continuum solvation approach. Biomass Model Mechanobiol 15(6):1557–1576

    Google Scholar 

  178. Bavi O et al (2016) Influence of Global and Local Membrane Curvature on Mechanosensitive Ion Channels: A Finite Element Approach. Membranes (Basel) 6:14. doi:10.3390/membranes6010014

    Article  PubMed Central  CAS  Google Scholar 

  179. Sakmann B (2013) Single-channel recording. Springer Science & Business Media, New York

    Google Scholar 

  180. Nilius B (2003) Pflugers Archiv and the advent of modern electrophysiology. From the first action potential to patch clamp. Pflugers Arch 447:267–271. doi:10.1007/s00424-003-1156-2

    Article  CAS  PubMed  Google Scholar 

  181. Nakayama Y, Slavchov RI, Bavi N, Martinac BT (2016) Energy of liposome patch adhesion to the pipette glass determined by confocal fluorescence microscopy. J Phys Chem Lett 7:4530

    Article  CAS  PubMed  Google Scholar 

  182. Suchyna TM, Markin VS, Sachs F (2009) Biophysics and structure of the patch and the gigaseal. Biophys J 97:738–747. doi:10.1016/j.bpj.2009.05.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Guharay F, Sachs F (1984) Stretch-activated single ion channel currents in tissue-cultured embryonic chick skeletal muscle. J Physiol 352:685–701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Brehm P, Kullberg R, Moody-Corbett F (1984) Properties of non-junctional acetylcholine receptor channels on innervated muscle of Xenopus Laevis. J Physiol 350:631–648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Hamill OP, Marty A, Neher E, Sakmann B, Sigworth FJ (1981) Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch 391:85–100

    Article  CAS  PubMed  Google Scholar 

  186. Hamill O (2006) Twenty odd years of stretch-sensitive channels. Pflugers Arch 453:333–351

    Article  CAS  PubMed  Google Scholar 

  187. Zhang Y, Gao F, Popov VL, Wen JW, Hamill OP (2000) Mechanically gated channel activity in cytoskeleton-deficient plasma membrane blebs and vesicles from Xenopus oocytes. J Physiol 523(1):117–130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Zhang Y, Hamill OP (2000) Calcium-, voltage-and osmotic stress-sensitive currents in Xenopus oocytes and their relationship to single mechanically gated channels. J Physiol 523:83–99

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Hamill OP, McBride DW (1995) Mechanoreceptive membrane channels. Am Sci 83:30–37

    Google Scholar 

  190. Blount P, Schroeder MJ, Kung C (1997) Mutations in a bacterial mechanosensitive channel change the cellular response to osmotic stress. J Biol Chem 272:32150–32157

    Article  CAS  PubMed  Google Scholar 

  191. Nilius B (2007) Transient receptor potential (TRP) cation channels: rewarding unique proteins. Bull Mem Acad R Med Belg 162:244–253

    PubMed  Google Scholar 

  192. Buday T, Kovacikova L, Ruzinak R, Plevkova J (2017) TRPV4 antagonist GSK2193874 does not modulate cough response to osmotic stimuli. Respir Physiol Neurobiol 236:1–4

    Article  CAS  PubMed  Google Scholar 

  193. Jiang H, Sun SX (2013) Cellular pressure and volume regulation and implications for cell mechanics. Biophys J 105:609–619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Sun M et al (2005) Multiple membrane tethers probed by atomic force microscopy. Biophys J 89:4320–4329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Chaudhuri O, Parekh SH, Lam WA, Fletcher DA (2009) Combined atomic force microscopy and side-view optical imaging for mechanical studies of cells. Nat Methods 6:383–387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Mescola A et al (2012) Probing cytoskeleton organisation of neuroblastoma cells with single-cell force spectroscopy. J Mol Recognit 25:270–277

    Article  CAS  PubMed  Google Scholar 

  197. Ossola D et al (2015) Force-controlled patch clamp of beating cardiac cells. Nano Lett 15:1743–1750

    Article  CAS  PubMed  Google Scholar 

  198. Hochmuth F, Shao J-Y, Dai J, Sheetz MP (1996) Deformation and flow of membrane into tethers extracted from neuronal growth cones. Biophys J 70:358–369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Dao M, Lim CT, Suresh S (2003) Mechanics of the human red blood cell deformed by optical tweezers. J Mech Phys Solids 51:2259–2280

    Article  Google Scholar 

  200. Zhang H, Liu K-K (2008) Optical tweezers for single cells. J R Soc Interface 5:671–690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Hénon S, Lenormand G, Richert A, Gallet F (1999) A new determination of the shear modulus of the human erythrocyte membrane using optical tweezers. Biophys J 76:1145–1151

    Article  PubMed  PubMed Central  Google Scholar 

  202. Iskratsch T, Wolfenson H, Sheetz MP (2014) Appreciating force and shape [mdash] the rise of mechanotransduction in cell biology. Nat Rev Mol Cell Biol 15:825–833

    Article  CAS  PubMed  Google Scholar 

  203. Svoboda K, Block SM (1994) Biological applications of optical forces. Annu Rev Biophys Biomol Struct 23:247–285

    Article  CAS  PubMed  Google Scholar 

  204. Tatsumi H et al (2014) Mechanosensitive channels are activated by stress in the actin stress fibres, and could be involved in gravity sensing in plants. Plant Biol 16:18–22

    Article  PubMed  Google Scholar 

  205. Hayakawa K, Tatsumi H, Sokabe M (2008) Actin stress fibers transmit and focus force to activate mechanosensitive channels. J Cell Sci 121:496–503. doi:10.1242/jcs.022053

    Article  CAS  PubMed  Google Scholar 

  206. Neuman KC, Nagy A (2008) Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy. Nat Methods 5:491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Laurent VM et al (2002) Assessment of mechanical properties of adherent living cells by bead micromanipulation: comparison of magnetic twisting cytometry vs optical tweezers. J Biomech Eng 124:408–421

    Article  PubMed  Google Scholar 

  208. Nakayama Y et al (2015) Magnetic nanoparticles for “smart liposomes”. Eur Biophys J 44:647–654

    Article  CAS  PubMed  Google Scholar 

  209. Meister M (2016) Physical limits to magnetogenetics. elife 5:e17210

    Article  PubMed  PubMed Central  Google Scholar 

  210. Wheeler MA et al (2016) Genetically targeted magnetic control of the nervous system. Nat Neurosci 19:756–761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Stanley SA et al (2016) Bidirectional electromagnetic control of the hypothalamus regulates feeding and metabolism. Nature 531:647–650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Schoen I, Hu W, Klotzsch E, Vogel V (2010) Probing cellular traction forces by micropillar arrays: contribution of substrate warping to pillar deflection. Nano Lett 10:1823–1830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Lee LM, Liu AP (2015) A microfluidic pipette array for mechanophenotyping of cancer cells and mechanical gating of mechanosensitive channels. Lab Chip 15:264–273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Ranade SS et al (2014) Piezo1, a mechanically activated ion channel, is required for vascular development in mice. Proc Natl Acad Sci U S A 111:10347–10352. doi:10.1073/pnas.1409233111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Wu J, Lewis AH, Grandl J (2017) Touch, tension, and transduction–the function and regulation of Piezo Ion channels. Trends Biochem Sci 42:57–71

    Article  CAS  PubMed  Google Scholar 

  216. Miyamoto T et al (2014) Functional role for Piezo1 in stretch-evoked Ca2+ influx and ATP release in urothelial cell cultures. J Biol Chem 289:16565–16575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Wu L, Gao X, Brown RC, Heller S, O'Neil RG (2007) Dual role of the TRPV4 channel as a sensor of flow and osmolality in renal epithelial cells. Am J Physiol Ren Physiol 293:F1699–F1713

    Article  CAS  Google Scholar 

  218. Nauli SM et al (2003) Polycystins 1 and 2 mediate mechanosensation in the primary cilium of kidney cells. Nat Genet 33:129–137

    Article  CAS  PubMed  Google Scholar 

  219. Peyronnet R, Tran D, Girault T, Frachisse J-M (2013) Mechanosensitive channels: feeling tension in a world under pressure. Front Plant Sci 5:558–558

    Google Scholar 

  220. Bhattacharya MR et al (2008) Radial stretch reveals distinct populations of mechanosensitive mammalian somatosensory neurons. Proc Natl Acad Sci 105:20015–20020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Schürmann S et al (2016) The IsoStretcher: an isotropic cell stretch device to study mechanical biosensor pathways in living cells. Biosens Bioelectron 81:363–372

    Article  PubMed  CAS  Google Scholar 

  222. Meng F, Sachs F (2011) Measuring strain of structural proteins in vivo in real time. In: Kohl P, Sachs F, Franz MR (eds) Cardiac mechano-electric coupling and arrhythmia: from pipette to patient. Oxford University Press, Oxford, pp 431–434

    Google Scholar 

  223. Meng F, Suchyna TM, Lazakovitch E, Gronostajski RM, Sachs F (2011) Real time FRET based detection of mechanical stress in cytoskeletal and extracellular matrix proteins. Cell Mol Bioeng 4:148–159. doi:10.1007/s12195-010-0140-0

    Article  PubMed  PubMed Central  Google Scholar 

  224. Wang Y, Meng F, Sachs F (2011) Genetically encoded force sensors for measuring mechanical forces in proteins. Commun Integr Biol 4:385–390. doi:10.4161/cib.4.4.15505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Grashoff C et al (2010) Measuring mechanical tension across vinculin reveals regulation of focal adhesion dynamics. Nature 466:263–266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Yamashita S, Tsuboi T, Ishinabe N, Kitaguchi T, Michiue T (2016) Wide and high resolution tension measurement using FRET in embryo. Sci Rep 6:28535

    Article  PubMed  PubMed Central  Google Scholar 

  227. Silhavy TJ, Kahne D, Walker S (2010) The bacterial cell envelope. Cold Spring Harb Perspect Biol 2:a000414

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  228. Levina N et al (1999) Protection of Escherichia Coli cells against extreme turgor by activation of MscS and MscL mechanosensitive channels: identification of genes required for MscS activity. EMBO J 18:1730–1737. doi:10.1093/emboj/18.7.1730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Bialecka-Fornal M, Lee HJ, Phillips R (2015) The rate of osmotic downshock determines the survival probability of bacterial mechanosensitive channel mutants. J Bacteriol 197:231–237. doi:10.1128/JB.02175-14

    Article  PubMed  CAS  Google Scholar 

  230. Nomura T, Cox CD, Bavi N, Sokabe M, Martinac B (2015) Unidirectional incorporation of a bacterial mechanosensitive channel into liposomal membranes. FASEB J 29:4334–4345. doi:10.1096/fj.15-275198

    Article  CAS  PubMed  Google Scholar 

  231. Martinac B et al (2013) Bacterial mechanosensitive channels: models for studying mechanosensory transduction. Antioxid Redox Signal 20:952. doi:10.1089/ars.2013.5471

    Article  PubMed  CAS  Google Scholar 

  232. Blount P, Sukharev SI, Moe P, Kung C (1997) Mechanosensitive channels of E. coli: a genetic and molecular dissection. Biol Bull 192:126–127

    Article  CAS  PubMed  Google Scholar 

  233. Vasquez V, Sotomayor M, Cordero-Morales J, Schulten K, Perozo E (2008) A structural mechanism for MscS gating in lipid bilayers. Science 321:1210–1214. doi:10.1126/science.1159674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Anishkin A et al (2003) On the conformation of the COOH-terminal domain of the large mechanosensitive channel MscL. J Gen Physiol 121:227–244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Ando C, Liu N, Yoshimura K (2015) A cytoplasmic helix is required for pentamer formation of the Escherichia coli MscL mechanosensitive channel. J Biochem 158:109–114. doi:10.1093/jb/mvv019

    Article  CAS  PubMed  Google Scholar 

  236. Iscla I, Wray R, Blount P (2008) On the structure of the N-terminal domain of the MscL channel: helical bundle or membrane interface. Biophys J 95:2283–2291. doi:10.1529/biophysj.107.127423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Steinbacher S, Bass R, Strop P, Rees DC (2007) Structures of the prokaryotic mechanosensitive channels MscL and MscS. In: Hamill OP (ed) Mechanosensitive ion channels, part A, San Diego, Elsevier Academic Press, Inc, pp 1–24

    Google Scholar 

  238. Honore E (2007) The neuronal background K2P channels: focus on TREK1. Nat Rev Neurosci 8:251–261., doi:nrn2117 [pii]10.1038/nrn2117

    Article  CAS  PubMed  Google Scholar 

  239. Patel AJ, Honore E (2001) Properties and modulation of mammalian 2P domain K+ channels. Trends Neurosci 24:339–346

    Article  CAS  PubMed  Google Scholar 

  240. Patel AJ et al (1998) A mammalian two pore domain mechano-gated S-like K+ channel. EMBO J 17:4283–4290. doi:10.1093/emboj/17.15.4283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

N.B. has been supported by a University International Postgraduate Award (UIPA) and P.R. has been supported by a University International Tuition Award (UITA) from the University of New South Wales, whereas Y.N. has been supported by a UIPA from the University of Newcastle. This project was supported by the Australian Research Council and Principal Research Fellowship to B.M. from the National Health and Medical Research Council of Australia. This work was also supported in part by funds from the Office of Health and Medical Research, NSW State Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boris Martinac .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Bavi, N. et al. (2017). Principles of Mechanosensing at the Membrane Interface. In: Epand, R., Ruysschaert, JM. (eds) The Biophysics of Cell Membranes. Springer Series in Biophysics, vol 19. Springer, Singapore. https://doi.org/10.1007/978-981-10-6244-5_4

Download citation

Publish with us

Policies and ethics