Skip to main content
Log in

Subcritical growth of fracture (inelastic fatigue)

  • Published:
International Journal of Fracture Mechanics Aims and scope Submit manuscript

Abstract

A local energy criterion of Irwin's type is applied to a problem of a quasi-static extension of a crack embedded in an elastic-plastic or viscoelastic-plastic matrix. The derived nonlinear differential equation ℳ(σ, l, dσ/dl) + G(σ, l) = G c /Ψ(Δ/l) governs subcritical growth up to the point of gross instability.

The creep rupture under sustained loads and fatigue crack propagation both described by the above equation, are shown to follow almost identical mathematical representations. The essential features such as the resistance curves, the dependence of growth rate on the current K-factor and the amount of growth vs. time relations are shown to be strikingly similar.

Résumé

Un critère d'énergie locale, du type proposé par Irwin, et appliqué a l'étude du problème de l'extension quasi-statique d'une fissure sise dans une matrice élasto-plastique ou viscoélastique-plastique.

L'équation différentielle non-linéafire ℳ(σ, l, dσ/dl) + G(σ, l) = Ge/Ψ(Δ/l) régit l'extension subcritique jusqu'au stade de I'instabilité d'ensemble.

On démontre que la rupture par fluage sous charges constantes et la propagation des fissures de fatigue qui sont toutes deux recevables de l'équation ci-dessus, peuvent être exprimées en termes mathématiques de maniére sensi blement identique.

Des caractéristiques essentielles comme les courbes de résistance, les relations qui lient la vitesse de propagation au facteur K, et le taux de propagation au facteur temps, présentent une similitude remarquable.

Zusammenfassung

Ein Ausdruck für die lokale Energie nach dem Vorschlag von Irwin wurde zur Lösung des Problems der quasistatischen Ausbreitung eines in einer elasto-plastischen oder viskoelastoplastischen Matrize eingebetteten Risses angewandt. Die abgelcitete nicht-lineare Differentialgleichung ℳ(σ, l, dσ/dl) + G(σ, l) = Ge/Ψ(Δ/l) beschreibt das unterkritische Wachstum bis zum Stadium der allgemeinen Instabilitat.

Es wird gezeigt, daB der Bruch unter Dauerbelastung and das Fortschreiten von Alterungsrissen, welche beide durch obige Gleichung beschrieben werden, fast identischen mathematischen Darstellungen folgen. Die wichtigsten Merkmale wie Widerstandskurven, Abhangigkeit der Wachstumsgeschwindigkeit vom K-Wert, Bowie diejenige zwischen Wachstum and Zeit sind auffallend ähnlich.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. F. Brown and J. E. Srawley, Fracture Toughness Testing, ASTM, Special Technical Publication No. 381,1964.

  2. G. P. Cherepanov, Crack Propagation in Continuous Media, PMM, 31, No. 3 (1967) 476.

    Google Scholar 

  3. G. P. Cherepanov, Cracks in Solids, Int. J. Solids Structures, 4 (1968) 811.

    Google Scholar 

  4. S. D. Cotterell, An Interpretation of the Mechanics of Crack Growth by Fatigue, J. Basic Eng., Transactions ASME, Ser. D, Vol. 87 (1965) 230.

    Google Scholar 

  5. L. S. Gradstain and I. M. Ryzhik, Tables of Integrals (Russian Edition), G. I. Phys. Math. Lit., Moscow, 1962.

  6. R. E. Johnson, Investigation of Cyclic Crack Growth Rates in Metals, Brief prepared for NASA, Aircraft Engine Group, General Electric, Cincinnati, 1968.

    Google Scholar 

  7. M. Keer and T. Mura, Stationary Crack and Continuous Distributions of Dislocations, Proceedings Int. Conference Fracture, Sendai, Japan, 1965.

  8. W. G. Knauss, The Griffith Problem for Linearly Viscoelastic Materials, Int. J. Fracture Mechanics, 6, No. 1 (1970) 7–20.

    Google Scholar 

  9. W. G. Knauss and H. K. Mueller, Crack Propagation in a Linearly Viscoelastic Strip, California Inst. Technology, GALCIT SM 68-14, September 1968.

  10. J. M. Krafft, A. M. Sullivan and R. W. Boyle, Effect of Dimensions on Fast Fracture Instability of Notched Sheets, Crack Propagation Symposium, Cranfield, 1961.

  11. F. A. McClintock and G. R. Irwin, Plasticity Aspects of Fracture Mechanics, ASTM, Special Technical Publ. No. 381, 1964.

  12. E. M. Morozov and W. T. Sapunov, Spread of Cracks in an Elastic-plastic Solid (in Russian), The Moscow Phys-Engineering Institute Reports, Deformation and Fracture due to Thermal and Mechanical Interactions, Atomizdot, Moscow, 1969.

  13. V. V. Novozhilov, On a Necessary and Sufficient Criterion for Brittle Strength, PPM, 33, No. 2 (1969) 212.

    Google Scholar 

  14. Z. Olesiak and M. P. Wnuk, Plastic Energy Dissipation due to a Penny Shaped Crack (in Polish, Rozpr. Inz., 14, No. 3 (1966) 4411, in English: Int. J. Fracture Mech., 4 (1968) 383.

    Google Scholar 

  15. P. C. Paris, The Fracture Mechanics Approach to Fatigue, Fatigue — An Interdisciplinary Approach, Syracuse University Press, Syracuse, N. Y., 1964.

    Google Scholar 

  16. J. R. Rice, Mechanics of Crack Tip Deformation and Extension by Fatigue, ASTM, Special Technical Publ. No. 415, 1967.

  17. J. R. Rice, Mathematical Analysis in the Mechanics of Fracture, in Fracture, An Advanced Treatise, Vol. 2, Academic Press, New York, 1968.

    Google Scholar 

  18. I. N. Sneddon and M. Lowengrub, Crack Problems in the Classical Theory of Elasticity, The SIAM Series in Applied Mathematics, John Wiley & Sons, Inc., New York, 1969.

    Google Scholar 

  19. N. H. Watts and D. J. Burns, Fatigue Crack Propagation in PMMA, Proc. 22nd An. Tech. Conf. S.P.E., Montreal, 1966.

  20. J. Weertman, Rate of Growth of Fatigue Cracks as Calculated from the Theory of Infinitesimal Dislocations Distributed on a Plane, Proceedings Int. Conf. Fracture, Sendai, Japan, 1965.

  21. M. P. Wnuk, Nature of Fracture in Relation to the Total Potential Energy, Brit. J. Appl. Phys., Vol. 1, Ser. 2 (1968) 217.

    Google Scholar 

  22. M. P. Wnuk, Effects of Time and Plasticity on Fracture, Brit. J. Appl. Phys., 2, Ser. 2 (1969) 1245.

    Google Scholar 

  23. M. P. Wnuk and W. G. Knauss, Delayed Fracture in Viscoelastic-plastic Solids, Int. J. Solids & Structures (in print).

  24. M. P. Wnuk, Similarity Between Creep Rupture in Viscoelastic Solids and Fatigue in Metals (Inelastic Fatigue), Tech. Report No. 1, prepared for ONR, S. D. State U., April 1970.

  25. T. Yokobori, A Kinetic Theory of Fatigue Crack Propagation, Reports of Res. Institute for Strength of Materials, Tohoku University, Sendai, 1969.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wnuk, M.P. Subcritical growth of fracture (inelastic fatigue). Int J Fract 7, 383–405 (1971). https://doi.org/10.1007/BF00189110

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00189110

Keywords

Navigation