Skip to main content

Part of the book series: Studies in Systems, Decision and Control ((SSDC,volume 39))

  • 824 Accesses

Abstract

The laminar neuropil in the phylogenetically older parts of the cerebrum is called allocortex (Mountcastle (ed), Medical physiology, C V Mosby, St Louis, 1974, [1]. Examples include the prepyriform cortex (paleocortex), the hippocampus (archicortex) and parts of the perirhinal and entorhinal cortex (mesocortex) Maclean, The triune brain. Plenum, New York, 1969, [2]; the olfactory bulb is here included as allocortex owing to its similarity to the others in topology and phylogenetic derivation, though not all anatomists accept this taxonomy. Generically allocortex has three layers with differing subdivisions specific to each area. Layer I also called marginal lies under the bounding pial membrane and has input axons and the dendritic trees on which they synapse. Layer II has the cell bodies, often with triangular shapes giving the name pyramidal cells (mitral cells in the bulb). Layer III has output axons with recurrent side branches called collateral branches that synapse on interneurons called stellate cells (internal granule cells in the bulb) but mainly on other pyramidal cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mountcastle VB (ed) (1974) Medical physiology, 13th edn. C V Mosby, St Louis

    Google Scholar 

  2. Maclean PD (1969) The triune brain. Plenum, New York

    Google Scholar 

  3. Brodmann K (1909) Vergleichende Lokalizationslehre der Grosshirnrinde. Barth, Leipzig

    Google Scholar 

  4. Sholl DA (1956) The organization of the cerebral cortex. Methuen-Wiley, London

    Google Scholar 

  5. Karten HJ (1997) Evolutionary developmental biology meets the brain: the origins of mammalian cortex. Proc Natl Acad Sci 94:2800–2804

    Article  Google Scholar 

  6. Aboitiz F, Montiel J, Morales D, Concha M (2002) Evolutionary divergence of the reptilian and the mammalian brains: considerations on connectivity and development. Brain Res Rev 39:141–153

    Article  Google Scholar 

  7. Shatz CJ, Chun JJM, Luskin MB (1988) The role of the subplate in the development of the telencephalon. In: Jones EG, Peters A (eds) The cerebral cortex. The development of the cerebral cortex. Vol III. Plenum, New York, pp 35–58

    Google Scholar 

  8. Allendoerfer KL, Shatz CJ (1994) The subplate, a transient neocortical structure: its role in the development of connections between thalamus and cortex. Annu Rev Neurosci 17:185–218

    Article  Google Scholar 

  9. Nauta JH (1954) Terminal distributions of some afferent fiber systems in the cerebral cortex. Anat Rec 118:333–346

    Google Scholar 

  10. Miller R, Maitra R (2002) Laminar continuity between neo- and meso-cortex: the hypothesis of the added laminae in neocortex. Chap. 11. In: Schuz A, Miller R (eds) Cortical areas: unity and diversity. Taylor and Francis, New York, pp 219–242

    Chapter  Google Scholar 

  11. Fellemin DJ, Van Essen DC (1991) Distributed hierarchical processing in the primate cerebral cortex. Cereb Cortex 1:1–47

    Article  Google Scholar 

  12. Houk JC (2005) Agents of the mind. Biol Cybern 92(6):427–437

    Article  MATH  Google Scholar 

  13. Miller R (1996) Neural assemblies and laminar interactions in the cerebral cortex. Biol Cybern 75:253–261

    Article  Google Scholar 

  14. Braitenberg V, Schuz A (1998) Cortex: statistics and geometry of neuronal connectivity, 2nd edn. Springer, Berlin

    Book  Google Scholar 

  15. Bok ST (1959) Histonomy of the cerebral cortex. Elsevier, Amsterdam

    Google Scholar 

  16. Malach R (1994) Cortical columns as devices for maximizing neuronal diversity. TINS 17:101–104

    Google Scholar 

  17. Kaas JH (1987) The organization of neocortex in mammals: implications for theories of brain function. Annu Rev Psychol 38:129–152

    Article  Google Scholar 

  18. Schuz A, Miller R (eds) (2002) Cortical measures: unity and diversity. Taylor and Francis, New York

    Google Scholar 

  19. Franken P, Malafosse A, Tafti M (1998) Genetic variation in EEG activity during sleep in inbred mice. Am J Physiol 275 RICP 44:R1127–1137

    Google Scholar 

  20. Lyamin OI, Mukhametov LM, Siegel JM, Nazarenko EA, Polyakova IG, Shpak OV (2002) Unihemispheric slow wave sleep and the state of the eyes in a white whale. Behav Brain Res 129:125–129

    Article  Google Scholar 

  21. Paldino A, Harth E (1977) A computerized study of Golgi-impregnated axons in rat visual cortex. In: Lindsay RD (ed) Computer analysis of neuronal structures. Plenum, New York, pp 189–207

    Chapter  Google Scholar 

  22. Schroeder M (1991) Fractals, chaos power laws. W.H. Freeman, New York

    MATH  Google Scholar 

  23. Uylings HBM, Van Pelt J (2002) Measures for quantifying dendritic arborizations. Netw Comput Neural Syst 13:397–414

    Article  Google Scholar 

  24. Jelinek HJ, Elston GN (2003) Dendritic branching of pyramidal cells in the visual cortex of the nocturnal owl monkey: a fractal analysis. Fractals 11(4):1–5

    Article  MathSciNet  Google Scholar 

  25. Linkenkaer-Hansen K, Nikouline VM, Palva JM, Iimoniemi RJ (2001) Long-range temporal correlations and scaling behavior in human brain oscillations. J Neurosci 15:1370–1377

    Google Scholar 

  26. Hwa RC, Ferree T (2002) Scaling properties of fluctuations in the human electroencephalogram. Phys Rev E 66:021901

    Article  Google Scholar 

  27. Basar E (2005) Memory as the whole brain work a large-scale model based on oscillations in super-synergy. Int J Psychophysiol 58:199–226

    Article  Google Scholar 

  28. Buxton RB (2001) Introduction to functional magnetic resonance imaging: principles and techniques. Cambridge University Press, Cambridge

    Google Scholar 

  29. Abeles M (1991) Corticonics: neural circuits of the cerebral cortex. Cambridge University Press, New York

    Book  Google Scholar 

  30. Singer W, Gray CM (1995) Visual feature integration and the temporal correlation hypothesis. Annu Rev Neurosci 18:555–586

    Article  Google Scholar 

  31. Quian Quiroga R, Reddy L, Kreiman G, Koch C, Fried I (2005) Invariant visual representation by single-neurons in the human brain. Nature 435:1102–1107

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Kozma .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kozma, R., Freeman, W.J. (2016). Supplement III: Neuroanatomy Considerations. In: Cognitive Phase Transitions in the Cerebral Cortex - Enhancing the Neuron Doctrine by Modeling Neural Fields. Studies in Systems, Decision and Control, vol 39. Springer, Cham. https://doi.org/10.1007/978-3-319-24406-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-24406-8_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-24404-4

  • Online ISBN: 978-3-319-24406-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics