Skip to main content
Log in

Catechol ring-cleavage in Pseudomonas cepacia: the simultaneous induction of ortho and meta pathways

  • Applied Microbial and Cell Physiology
  • Original Paper
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

This work demonstrates the ring-cleavage pathways of catechol on Pseudomonas cepacia ATCC 29351, formed upon its growth on salicylate and benzoate, each as a sole carbon source. When grown on salicylate, P. cepacia induces only the catechol ortho pathway by its induction of catechol 1,2-dioxygenase. However, interestingly, benzoate-grown cells induce the ortho and meta pathways for the biodegradation of catechol, by inducing simultaneously catechol 1,2-dioxygenase and 2,3-dioxygenase, respectively, in the ratio of 7:1. The results indicate that P. cepacia ATCC 29351 possesses the genetic capacity for enzymes of both the ortho- and meta-cleavage pathways of benzoate degradation, although the phenotypic expression for the ortho pathway is higher. The simultaneous induction of catechol 1,2- and 2,3-dioxygenase is not detected in salicylate degradation. Although catechol is the metabolic intermediate for both salicylate and benzoate, catechol did not induce either pathway when used as a sole carbon source.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ballard RW, Palleroni NJ, Doudoroff M, Stainer RY, Mandel M (1970) Taxonomy of the aerobic pseudomonads: Pseudomonas cepacia, P. marginata, P. alliicola, and P. caryophylli. J Gen Microbiol 60:199–214

    Article  CAS  Google Scholar 

  • Cain RB, Farr DR (1968) Metabolism of arylsulfonates by micro-organisms. Biochem J 106:859–877

    Article  CAS  Google Scholar 

  • Dagley S (1978) Pathways for the utilization of organic growth substrates. In: Ornston LN, Sokatch JR (eds) The bacteria, vol 6. Academic Press, New York, pp 305–388

    Google Scholar 

  • Dagley S (1982) The role of flavoproteins in aromatic catabolism. In: Massey V, Williams CH (eds) Flavins and flavoproteins. Elsevier, Amsterdam, pp 311–317

    Google Scholar 

  • Dagley S (1986) Biochemistry of aromatic hydrocarbon degradation by pseudomonads. Bacteria 10:527–555

    CAS  Google Scholar 

  • Davies JI, Evans WC (1964) Oxidative metabolism of naphthalene by soil pseudomonads. Biochem J 91:251–261

    Article  CAS  Google Scholar 

  • Dorn E, Knackmuss H-J (1978) Chemical structure and biodegradability of halogenated aromatic compounds: two catechol 1,2-dioxygenases from a 3-chlorobenzoate grown pseudomonad. Biochem J 174:73–84

    Article  CAS  Google Scholar 

  • Feist CF, Hegeman GD (1969a) Phenol and benzoate metabolism by Pseudomonas putida: regulation of tangenital pathways. J. Bacteriol 100:869–877

    CAS  PubMed  PubMed Central  Google Scholar 

  • Feist CF, Hegeman GD (1969b) Regulation of the meta cleavage pathway for benzoate oxidation by Pseudomonas putida. J Bacteriol 100:1121–1123

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gonzalez CF, Vidaver AK (1979) Bacteriocin, plasmid, and pectolytic diversity in Pseudomonas cepacia of clinical and plant origin. J Gen Microbiol 110:161–170

    Article  CAS  Google Scholar 

  • Hamzah RY (1984) Differential induction and characterization of flavoprotein hydroxylases in Pseudomona cepacia. Ph.D. Dissertation, University of Houston-University Park, USA

    Google Scholar 

  • Hamzah RY, Tu S-C (1981) Determination of the position of mono-oxygenation in the formation of catechol catalyzed by salicylate hydroxylase. J Biol Chem 256:6392–6394

    CAS  PubMed  Google Scholar 

  • Kemp MB, Hegeman GD (1968) Genetic control of β-ketoadipate pathway in Pseudomonas aeruginosa. J Biol Chem 96:1488–1499

    CAS  Google Scholar 

  • Kim Y, Tu S-C (1989) Molecular cloning of salicylate hydroxylase genes from Pseudomonas cepacia and Pseudomonas putida. Arch Biochem Biophys 269:295–304

    Article  CAS  Google Scholar 

  • Lessie TG, Gaffnew T (1986) Catabolic potential of Pseudomonas cepacia. In: Sokatch JR, Ornston LN (eds) The bacteria: the biology of Pseudomonas, vol 10. Academic Press, Orlando, Fla., pp 439–481

    Chapter  Google Scholar 

  • Lessie TG, Wood MS, Byrne A, Ferrante A (1990) Transposable gene-activating elements in Pseudomonas cepacia. In: Silver S, Chakrabarty AM, Iglewski B, Kaplan S (eds) Pseudomonas bio-transformations, pathogenesis, and evolving biotechnology. American Society of Microbiology, Washington, D.C., pp 279–291

    Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin-phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  • Massey V, Hemmerich P (1975) Flavin and pteridine monooxygenases. In: Boyer PD (ed) The enzymes, vol 12. Part B. Academic Press, New York, pp 191–252

    Chapter  Google Scholar 

  • Nakazawa T, Nakazawa A (1970) Pyrocatechase (Pseudomonas). Methods Enzymol 17A:518–522

    Article  Google Scholar 

  • Nakazawa T, Yokota T (1973) Benzoate metabolism in Pseudomonas putida (arvilla) mt-2: demonstration of two benzoate pathways. J Bacteriol 115:262–267

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nozaki M (1974) Nonheme iron dioxygenase. In: Hayaishi O (ed) Molecular mechanisms of oxygen activation. Academic Press, London, pp 135–162

    Google Scholar 

  • Nozaki M, Kagamiyama H, Hayaishi O (1963) Metapyrocatechase. I. Purification, crystallization and some properties. Biochem Z 338:582–590

    CAS  PubMed  Google Scholar 

  • Nozaki M, Ono K, Nakazawa T, Kotani S, Hayaishi O (1968) Metapyrocatechase. II. The role of iron and sulfhydryl groups. J. Biol Chem 243:2682–2690

    CAS  PubMed  Google Scholar 

  • Ornston LN (1971) Regulation of catabolic pathways in Pseudomonas. Bacteriol Rev 35:87–116

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sala-Trepat JM, Evans WC (1971) The meta-cleavage of catechol by Azotobacter species. 4-Oxalocronate ptthway. Eur J Biochem 20:400–413

    Article  CAS  Google Scholar 

  • Smith MR (1990) The biodegradation of aromatic hydrocarbons by bacteria. Biodegradation 1:191–206

    Article  CAS  Google Scholar 

  • Stainer RY, Ornston LN (1973) The β-ketoadipate pathway. Adv Microb Physiol 9:89–151

    Article  Google Scholar 

  • Stainer RY, Sleeper BP, Tsuchida M, McDonald DL (1950) Bacterial oxidation of aromatic compounds. III. The enzymatic oxidation of catechol and protocatechuic acid to β-ketoadipate acid. J Bacteriol 59:137–151

    Google Scholar 

  • Stainer RY, Palleroni NJ, Doudoroff M (1966) The aerobic pseudomonads: a taxonomic study. J Gen Microbiol 43:159–271

    Article  Google Scholar 

  • Wang L-H, Hamzah RY, Yu Y, Tu S-C (1987) Pseudomonas cepacia 3-hydroxybenzoate-6-hydroxylase: induction, purification, and characterization. Biochemistry 26:1099–1104

    Article  CAS  Google Scholar 

  • White-Stevens RH, Kamin H (1972) Studies of a flavoprotein, salicylate hydroxylase: 1. Preparation, properties, and the uncoupling of oxygen reduction from hydroxylation. J Biol Chem 247:2358–2370

    CAS  PubMed  Google Scholar 

  • Yamaguchi M, Fujisawa H (1980) Purification and characterization of an oxygenase component in benzoate 1,2-dioxygenase system from Pseudomonas arvilla c-1. J Biol Chem 255:5058–5063

    CAS  PubMed  Google Scholar 

  • Yamaguchi M, Fujisawa F (1982) Subunit structure of oxygenase component in benzoate 1,2-dioxgenase system from Pseudomonas arvilla c-1. J Biol Chem 257:12497–12502

    CAS  PubMed  Google Scholar 

  • Yamaguchi M, Yamauchi T, Fujisawa H (1975) Studies on mechanism of double hydroxylation I. Evidence for participation of NADH-cytochrome c reductase in the reaction of benzoate 1,2-dioxygenase (benzoate hydroxylase). Biochem Biophys Res Commun 67:264–271

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hamzah, R.Y., Al-Baharna, B.S. Catechol ring-cleavage in Pseudomonas cepacia: the simultaneous induction of ortho and meta pathways. Appl Microbiol Biotechnol 41, 250–256 (1994). https://doi.org/10.1007/BF00186968

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00186968

Keywords

Navigation