Skip to main content
Log in

Evolution of the recA gene and the molecular phylogeny of bacteria

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

The DNA sequences of the recA gene from 25 strains of bacteria are known. The evolution of these recA gene sequences, and of the derived RecA protein sequences, is examined, with special reference to the effect of variations in genomic G + C content. From the aligned RecA protein sequences, phylogenetic trees have been drawn using both distance matrix and maximum parsimony methods. There is a broad concordance between these trees and those derived from other data (largely 16S ribosomal RNA sequences). There is a fair degree of certainty in the relationships among the “Purple” or Proteobacteria, but the branching pattern between higher taxa within the eubacteria cannot be reliably resolved with these data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahmad S, Weisberg W, Jensen R (1990) Evolution of aromatic acid biosynthesis and application to the fine tuned phylogenetic positioning of enteric bacteria. J Bacteriol 172:1051–1061

    Google Scholar 

  • Amann R, Ludwig W, Schleifer KH (1988) Beta-subunit of ATP-synthase: a useful marker for studying the phylogenetic relationship of Eubacteria. J Gen Microbiol 134:2815–2821

    Google Scholar 

  • Arber W (1991) Elements of microbial evolution. J Mol Evol 33:4–12

    Google Scholar 

  • Bernardi G, Bernardi G (1986) Compositional constraints and genome evolution. J Mol Evol 24:1–11

    Google Scholar 

  • Bibb MJ, Findlay PR, Johnson MW (1984) The relationship between base composition and codon usage in bacterial genes and its use for the simple and reliable identification of protein coding sequences. Gene 30:157–166

    Article  CAS  PubMed  Google Scholar 

  • Brenner DJ (1984) Facultatively anaerobic gram-negative rods. In: Krieg NR, Holt JG (eds) Bergey's manual of systematic bacteriology vol 1. Williams and Wilkins, Baltimore, pp 409–420

    Google Scholar 

  • Cocks GT, Wilson AC (1972) Enzyme evolution in the Enterobacteriaciae. J Bacteriol 110:793–802

    Google Scholar 

  • De Vos P, van Landschoot A, Segers P, Tytgat R, Gillis M, Bauwens M, Rossau R, Goor M, Pot B, Kersters K, Lizzaraga P, de Ley J (1989) Genotypic relationships and taxonomic localization of unclassified Pseudomonas and Pseudomonas-like strains by deoxyribonucleic acid: ribosomal ribonucleic acid hybridizations. Int J Syst Bacteriol 39: 35–49

    Google Scholar 

  • Doolittle RF, Feng DF, Johnson MS, McClure MA (1986) Relationships of human protein sequences to those of other organisms. Cold Spring Harb Symp Quant Biol 51:447–455

    Google Scholar 

  • Dybvig K, Woodward A (1992) Cloning and DNA sequence of a Mycoplasmal recA gene. J Bacteriol 174:778–784

    Google Scholar 

  • Felsenstein J (1990) The PHYLIP manual version 3.4, University Herbarium. University of California, Berkeley, California

    Google Scholar 

  • Fitch WM (1971) Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20:406–416

    Google Scholar 

  • Fox GE, Stackbrandt E, Hespell RB, Gibson J, Maniloff J, Dyer TA, Wolfe RS, Balch WE, Tanner R, Magrum L, Zablen LB, Blakemore R, Gupta R, Bonen L, Lewis BJ, Stahl DA, Luehrsen KR, Chen KN, Woese CR (1980) The phylogeny of prokaryotes. Science 209:457–463

    Google Scholar 

  • Ghosh SK, Biswas SK, Paul K, Das J (1992) Nucleotide and deduced amino acid sequence of the recA gene of Vibrio cholerae. Nucleic Acids Res 20:372

    Google Scholar 

  • Gouy M, Gautier C, Attimonelli M, Lanave C, di Paola G (1985) ACNUC—a portable retrieval system for nucleic acid sequence databases: logical and physical designs and usage. CABIOS 1:167–172

    Google Scholar 

  • Gudas LJ, Pardee AB (1976) DNA synthesis inhibition and the induction of protein X in Escherichia coli. J Mol Biol 101: 459–477

    Google Scholar 

  • Higgins DG, Gouy M (1987) Interfacing similarity search software with the sequence retrieval system ACNUC. Comp Appl Biosci 3:239–241

    Google Scholar 

  • Higgins DG, Sharp PM (1988) CLUSTAL: a package for performing multiple sequence alignment on a microcomputer. Gene 73:237–244

    Article  CAS  PubMed  Google Scholar 

  • Higgins DG, Fuchs R, Bleasby A (1992) CLUSTALV: a new multiple sequence alignment program. Comp Appl Biosci 8: 189–191

    Google Scholar 

  • Holt JG (ed) (1984) Bergey's manual of systematic bacteriology, vols 1–3. Williams and Wilkins, Baltimore

    Google Scholar 

  • Hori H, Osawa S (1987) Origin and evolution of organisms as deduced from 5S ribosomal RNA sequences. Mol Biol Evol 4:445–472

    Article  Google Scholar 

  • Jukes TH, Bhushan V (1986) Silent nucleotide substitutions and G + C content of some mitochondrial and bacterial genes. J Mol Evol 24:39–44

    Google Scholar 

  • Kawaguchi R, Burgess JG, Matsunaga T (1992) Phylogeny and 16S RNA sequence of Magnetospirillum sp. AMB-1, an aerobic magnetic bacterium. Nucleic Acid Res. 20:1140

    Google Scholar 

  • Kimura M (1983) The neutral theory of molecular evolution. Cambridge University Press, Cambridge

    Google Scholar 

  • Lawrence JG, Ochman H, Hard DL (1991) Molecular and evolutionary relationships among enteric bacteria. J Gen Microbiol 137:1911–1921

    Google Scholar 

  • Li W-H, Wu C-I, Luo C-C (1985) A new method for estimating synonymous and nonsynonymous rates of nucleotide substitution considering the relative likelihood of nucleotide and codon changes. Mol Biol Evol 2:150–174

    Google Scholar 

  • Ludwig W, Weizenegger M, Betzl D, Leidel E, Lenz T, Ludvigsen A, Mollenhoff D, Wenzig P, Scheifer KH (1990) Complete nucleotide sequences of seven eubacterial genes coding for the elongation factor Tu: functional, structural and phylogenetic evaluations. Arch Microbiol 153:241–247

    Google Scholar 

  • Miller RV, Kokjohn TA (1990) General microbiology of recA environmental and evolutionary significance. Ann Rev Microbiol 44:365–394

    Google Scholar 

  • Muto A, Osawa S (1987) The guanine and cytosine content of genomic DNA and bacterial evolution. Proc Natl Acad Sci USA 84:166–169

    Google Scholar 

  • Ochman H, Wilson AC (1987a) Evolutionary history of enteric bacteria. In: Neidhardt FC, Ingraham JL, Low KB, Magasanik B, Schaechter M, Umbarger HE (eds) Escherichia coli and Salmonella typhimurium. American Society for Microbiology, Washington DC, pp 1649–1654

    Google Scholar 

  • Ochman H, Wilson AC (1987b) Evolution in bacteria: evidence for a universal substitution rate in cellular genomes. J Mol Evol 26:74–86

    Google Scholar 

  • Ohkubo S, Iwasaki H, Hori H, Osawa C (1986) Evolutionary relationship of denitrifying bacteria as deduced from 5S rRNA sequences. J Biochem 100:1261–1267

    Google Scholar 

  • Saitou N, Nei M (1987) The neighbor joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  • Selander RK, Caugant DA, Whittam TS (1987) Genetic structure and variation in natural populations of Escherichia coli. In: Neidhardt FC, Ingraham JL, Low KB, Magasanik B, Schaechter M, Umbarger HE (eds) Escherichia coli and Salmonella typhimurium. American Society for Microbiology, Washington DC, pp 1625–1648

    Google Scholar 

  • Sharp PM (1990) Processes of genome evolution reflected by base frequency differences among Serratia marcesens genes. Mol Microbiol 4:119–122

    Google Scholar 

  • Sharp PM, Kelleher JE, Daniel AS, Cowan GM, Murray NE (1992) Roles of selection and recombination in the evolution of type I restriction-modification systems in enterobacteria. Proc Natl Acad Sci USA 89:9836–9840

    Google Scholar 

  • Sharp PM, Li W-H (1987) The rate of synonymous substitution in enterobacterial genes is inversely related to codon usage bias. Mol Biol Evol 4:222–230

    Google Scholar 

  • Shields DC (1990) Switches in species specific codon preferences: the influences of mutation biases. J Mol Evol 31:71–80

    Google Scholar 

  • Stackebrandt E, Murray RGE, Truper HG (1988) Proteobacteria classis nov., a name for the phylogenetic taxon that includes ‘purple bacteria and their relatives’. Int J Syst Bacteriol 38: 321–325

    Google Scholar 

  • Story RM, Weber IT, Steitz TA (1992) The structure of the E. coli recA protein monomer and polymer. Nature 355:318–325

    Google Scholar 

  • Sueoka N (1962) On the genetic basis of variation and heterogeneity of DNA base composition. Proc Natl Acad Sci USA 85:2653–2657

    Google Scholar 

  • Tsuji K, Tsein HC, Hanson RS, DePalma SR, Scholtz R, LaRoche S (1990) 16S ribosomal RNA sequence analysis of determination of phylogenetic relationhip among methylotrophs. J Gen Microbiol 136:1–10

    Google Scholar 

  • Wayne LG, Kubica GP (1986) Mycobacteriaciae. In: Sneath PHA, Mair NS, Sharpe ME, Holt JF (ed) Bergey's manual of systematic bacteriology vol 2. Williams and Wilkins, Baltimore, pp 1436–1457

    Google Scholar 

  • Wilson AC, Carson SS, White TJ (1977) Biochemical evolution. Ann Rev Biochem 46:573–639

    Google Scholar 

  • Woese CR (1987) Bacterial evolution. Microbiol Rev 51:221–271

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Correspondence to: A.T. Lloyd

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lloyd, A.T., Sharp, P.M. Evolution of the recA gene and the molecular phylogeny of bacteria. J Mol Evol 37, 399–407 (1993). https://doi.org/10.1007/BF00178869

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00178869

Key words

Navigation