Skip to main content
Log in

Phylogeny of the Drosophila obscura species group deduced from mitochondrial DNA sequences

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

Approximately 2 kb corresponding to different regions of the mtDNA of 14 different species of the obscura group of Drosophila have been sequenced. In spite of the uncertainties arising in the phylogenetic reconstruction due to a restrictive selection toward a high mtDNA A+T content, all the phylogenetic analysis carried out clearly indicate that the obscura group is formed by, at least, four well-defined lineages that would have appeared as the consequence of a rapid phyletic radiation. Two of the lineages correspond to monophyletic subgroups (i.e., afftnis and pseudoobscura), whereas the obscura subgroup remains heterogeneous assemblage that could be reasonably subdivided into at least two complexes (i.e., subobscura and obscura).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Afonso JM, Pestano J, Hernández M (1988) Rapid isolation of mitochrondrial DNA from Drosophila adults. Biochem Genet 26: 381–386

    Google Scholar 

  • Barrio E, Latorre A, Moya A, Ayala FJ (1992) Phylogenetic reconstruction of the Drosophila obscura group based on mitochondrial DNA. Mol Biol Evol 9:621–635

    Google Scholar 

  • Beckenbach AT, Wei YW, Liu H (1993) Relationships in the Drosophila obscura species group, inferred from mitochondrial cytochrome oxidase II sequences. Mol Biol Evol 10:619–634

    Google Scholar 

  • Brehm A, Krimbas CB (1990) The phylogeny of nine species of the Drosophila obscura group inferred by the banding homologies of chromosomal regions. II. Element E. Hereditas 113:157–168

    Google Scholar 

  • Brehm A, Krimbas CB (1992) The phylogeny of nine species of the Drosophila obscura group inferred by the banding homologies of chromosomal regions. III. Element D. Genome 35:1075–1085

    Google Scholar 

  • Brehm A, Krimbas CB (1993) The phylogeny of nine species of the Drosophila obscura group inferred by the banding homologies of chromosomal regions. IV. Element C. Heredity 70:214–220

    Google Scholar 

  • Brehm A, Krimbas CB, Sourdis J, Cariou ML (1991) The phylogeny of nine species of the Drosophila obscura group inferred by the banding homologies of chromosomal regions. I. Element B. Genome 34:464–471

    Google Scholar 

  • Brown WM, Prager EM, Wang A, Wilson AC (1982) Mitochondrial DNA sequences of primates: tempo and mode of evolution. J Mol Evol 18:225–239

    Google Scholar 

  • Buzzati-Traverso A, Scossiroli RE (1955) The obscura group of the genus Drosophila. Adv Gent 7:47–92

    Google Scholar 

  • Cabrera VM, González AM, Larruga JM, Gullón A (1983) Genetic distance and evolutionary relationships in the Drosophila obscura group. Evolution 37:675–689

    Google Scholar 

  • Cariou ML, Lachaise D, Tsacas L, Sourdis J, Krimbas C, Ashburner M (1988) New African species in the Drosophila obscura species group: genetic variation, differentiation and evolution. Heredity 61: 73–84

    Google Scholar 

  • Clary DO, Wolstenholme DR (1985) The mitochondrial DNA molecule of Drosophila yakuba: nucleotide sequence, gene organization, and genetic code. J Mol Evol 22:252–271

    Google Scholar 

  • Cracraft J, Helm-Bychowski K (1991) Parsimony and phylogenetic inference using DNA sequences: some methodological strategies. In: Miyamoto MM, Cracraft J (eds) Phylogenetic analysis of DNA sequences. Oxford University Press, New York, pp 184–220

    Google Scholar 

  • DeSalle R, Freedman T, Prager EM, Wilson AC (1987) Tempo and mode of sequence evolution in mitochondrial DNA of Hawaiian Drosophila. J Mol Evol 26:157–164

    Google Scholar 

  • Dobzhansky T, Powell JR (1975) Drosophila pseudoobscura and its American relatives, Drosophila persimilis and Drosophila miranda, vol 3. In: King RC (ed) Handbook of genetics. Plenum Press, NY, pp 537–587

    Google Scholar 

  • Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376

    CAS  PubMed  Google Scholar 

  • Felsenstein J (1985a) Confidence limits on phylogenies with a molecular clock. Syst Zool 34:152–161

    Google Scholar 

  • Felsenstein J (1985b) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Google Scholar 

  • Felsenstein J (1990) PHYLIP manual version 3.3. University Herbarium of the University of California, Berkeley

    Google Scholar 

  • Fitch WM (1971) Toward defining the course of evolution: minimum change for a specified tree topology. Syst Zool 20:406–416

    Google Scholar 

  • Garesse R (1988) Drosophila melanogaster mitochondrial DNA: gene organization and evolutionary considerations. Genetics 118:649–663

    Google Scholar 

  • Goddard K, Caccone A, Powell JR (1990) Evolutionary implications of DNA divergence in the Drosophila obscura group. Evolution 44: 1656–1670

    Google Scholar 

  • González AM, Hernández M, Volz A, Pestano J, Larruga JM, Sperlich D, Cabrera VM (1990) mitochondrial DNA evolution in the obscura species subgroup of Drosophila. J Mol Evol 31:122–131

    Google Scholar 

  • Higgins DG, Sharp PM (1988) CLUSTAL: a package for performing multiple sequence alignment on a microcomputer. Gene 73:237–244

    Article  CAS  PubMed  Google Scholar 

  • Hillis DM, Bull JJ (1993) An empirical test of bootstrapping as a method for assessing confidence in phylogenetic analysis. Syst Biol 42:182–192

    Google Scholar 

  • Kishino H, Hasegawa M (1989) Evaluation of the maximum likelihood estimate on the evolutionary tree topologies from DNA sequence data, and the branching order in Hominoidea. J Mol Evol 29:170–179

    CAS  PubMed  Google Scholar 

  • Kraus F, Miyamoto MM (1991) Rapid cladogenesis among the Pecoran ruminants: evidence from mitochondrial DNA sequences. Syst Zool 40:117–130

    Google Scholar 

  • Krimbas K, Loukas M (1980) The inversion polymorphism of Drosophila subobscura. Evol Biol 12:163–234

    Google Scholar 

  • Krimbas K, Loukas M (1984) Evolution of the obscura group Drosophila species. I. Salivary chromosomes and quantitative characters in D. subobscura and two closely related species. Heredity 53:469482

    Google Scholar 

  • Kumar S, Tamura K, Nei M (1993) MEGA: molecular evolutionary genetics analysis, version 1.0. The Pennsylvania State University, University Park, Pennsylvania

    Google Scholar 

  • Lakovaara S, Keränen L (1980) Phylogeny of the Drosophila obscura group. Genetika 12:157–172

    CAS  PubMed  Google Scholar 

  • Lakovaara S, Saura A (1982) Evolution and speciation in the Drosophila obscura group. In: Ashburner M, Carson HL, Thompson JN (eds) The genetics and biology of Drosophila, vol 36. Academic Press, New York, pp 1–59

    Google Scholar 

  • Lakovaara S, Saura A, Falk CT (1972) Genetic distance and evolutionary relationships in the Drosophila obscura group. Evolution 26: 177–184

    Google Scholar 

  • Lakovaara S, Saura A, Lankinen P, Pohjola L, Lokki J (1976) The use of isoenzymes in tracing evolution and in classifying Drosophilidae. Zool Scripta 5:173–179

    Google Scholar 

  • Latorre A, Barrio E, Moya A, Ayala FJ (1988) Mitochondrial DNA evolution in the Drosophila obscura group. Mol Biol Evol 5:717–728

    Google Scholar 

  • Latorre A, Moya A, Ayala FJ (1986) Evolution of mitochondrial DNA in Drosophila subobscura. Proc Natl Acad Sci USA 83:8649–8653

    Google Scholar 

  • Li W-H, Gouy M (1990) Statistical tests of molecular phylogenies. Methods Enzymol 183:645–659

    Google Scholar 

  • Liu H, Beckenbach AT (1992) Evolution of the mitochondrial cytochrome oxidase II gene among 10 orders of insects. Mol Phylogenet Evol 1:41–52

    Google Scholar 

  • Loukas M, Krimbas CB, Vergini V (1984) Evolution of the obscura group Drosophila species: II. Phylogeny of ten species based on electrophoretic data. Heredity 53:483–493

    Google Scholar 

  • Marfany G, Gonzàlez-Duarte R (1993) Characterization and evolution of the Adh genomic region in Drosophila guanche and Drosophila madeirensis. Mol Phylogenet Evol 2:13–22

    Google Scholar 

  • Marinkovic D, Ayala FJ, Andjelkovic M (1978) Genetic polymorphism and phylogeny of Drosophila subobscura. Evolution 32:164–173

    Google Scholar 

  • Martin AP, Kessing BD, Palumbi SR (1990) Accuracy of estimating genetic distance between species from short sequences of mitochondrial DNA. Mol Biol Evol 7:485–488

    Google Scholar 

  • Martínez D, Moya A, Latorre A, Fereres A (1992) Mitochondrial DNA variation in Rhopalosiphum padi (Homoptera: Aphididae) populations from four distant Spanish localities. Ann Entomol Soc Am 85:241–246

    Google Scholar 

  • Pamilo P, Nei M (1988) Relationships between gene trees and species tress. Mol Biol Evol 5:568–583

    Google Scholar 

  • Pinsker W, Buruga J (1982) Comparative study of allozyme variation in six species of the Drosophila obscura group. Z Zool Syst Evolutionsforsch 20:53–63

    Google Scholar 

  • Ruttkay H, Solignac M, Sperlich D (1992) Nuclear and mitochondrial ribosomal RNA variability in the obscura group of Drosophila. Genetica 85:131–138

    Google Scholar 

  • Saccone C, Lanave C, Pesole G (1993) Time and biosequences. J Mol Evol 37:154–159

    Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning. A laboratory manual. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74:5463–5467

    CAS  PubMed  Google Scholar 

  • Sturtevant AH (1942) The classification of the genus Drosophila with the description of nine new species. Univ Texas Publ 4213:5–51

    Google Scholar 

  • Swofford DL, Olsen GJ (1990) Phylogenetic reconstruction. In: Hillis DM, Moritz C (eds) Molecular systematics. Sinauer, Sunderland, MA, pp 411–501

    Google Scholar 

  • Tamura K (1992a) Estimation of the number of nucleotide substitutions when there are strong transition-transversion and G+C-content biases. Mol Biol Evol 9:678–687

    Google Scholar 

  • Tamura K (1992b) The rate and pattern of nucleotide substitution in Drosophila mitochondrial DNA. Mol Biol Evol 9:814–825

    Google Scholar 

  • Templeton AR (1983) Phylogenetic inference from restriction endonuclease cleavage site maps with particular reference to the evolution of humans and the apes. Evolution 37:221–224

    Google Scholar 

  • Thomas WK, Beckenbach AT (1989) Variation in salmonid mitochondrial DNA: evolutionary constraints and mechanisms of substitution. J Mol Evol 29:233–245

    Google Scholar 

  • Throckmorton LH (1975) The phylogeny, ecology, and geography of Drosophila. In: King RC (ed) Handbook of genetics, vol 3. Plenum Press, New York, pp 421–469

    Google Scholar 

  • Tsacas L, Cariou ML, Lachaise D (1985) Le groupe Drosophila obscura en Afrique de l'Es. Description de trois nouvelles espèces (Diptera, Drosophilidae). Ann Soc Entomol Fr 21:413–424

    Google Scholar 

  • Wolstenholme DR, Clary DO (1985) Sequence evolution of Drosophila mitochondrial DNA. Genetics 109:725–744

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barrio, E., Latorre, A. & Moya, A. Phylogeny of the Drosophila obscura species group deduced from mitochondrial DNA sequences. J Mol Evol 39, 478–488 (1994). https://doi.org/10.1007/BF00173417

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00173417

Key words

Navigation