Skip to main content
Log in

Molecular analysis of a Bjerkandera adusta lignin peroxidase gene

  • Applied Genetics and Regulation
  • Short Contribution
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Summary

A cDNA clone, λLPO-1, encoding a major lignin peroxidase from the basidiomycete Bjerkandera adusta was isolated and characterized. The nucleotide sequence of λLPO-1 predicts a mature protein consisting of 349 amino acids with a molecular weight of 37,225 preceded by a signal peptide of 23 amino acid residues. We have also cloned and sequenced the gene encoding lignin peroxidase from B. adusta. Comparison of these sequences reveals a lignin peroxidase gene structure consisting of 1,116 bp of protein-encoding DNA that is interrupted by four intervening sequences. The putative eukaryotic regulatory sequence, a TATA box, is present at position — 75 relative to the translational initiation codon. Amino acid sequence homology between the coding regions of λLPO-1 and of the lignin peroxidase cDNA clone λML-1 from Phanerochaete chrysosporium is 61%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andrawis A, Pease EA, Kuan I-C, Holzbaur E, Tien M (1989) Characterization of two lignin peroxidase clones from Phanerochaete chrysosporium. Biochem Biophys Res Commun 162:673–680

    Google Scholar 

  • Asada Y, Kimura Y, Kuwahara M, Tsukamoto A, Koide K, Oka A, Takanami M (1988) Cloning and sequencing of a ligninase gene from a lignin-degrading basidiomycete, Phanerochaete chrysosporium. Appl Microbiol Biotechnol 29:469–473

    Google Scholar 

  • Ballance DJ (1986) Sequences important in gene expression in filamentous fungi. Yeast 2:229–236

    CAS  PubMed  Google Scholar 

  • de Boer HA, Zhang YZ, Collins C, Reddy CA (1987) Analysis of nucleotide sequences of two ligninase cDNAs from a white-rot filamentous fungus, Phanerochaete chrysosporium. Gene 60:93–102

    Google Scholar 

  • Brown A, Sims PFG, Raeder U, Broda P (1988) Multiple ligninase-related genes from Phanerochaete chrysosporium. Gene 73:77–85

    Google Scholar 

  • Bussey H (1988) Proteases and the processing of precursors to secreted proteins in yeast. Yeast 4:17–26

    Google Scholar 

  • Dodson PJ, Evans CS, Harvey PJ, Palmer JM (1987) Production and properties of an extracellular peroxidase from Coriolus versicolor which catalyses Cα-Cβ cleavage in a lignin model compound. FEMS Microbiol Lett 42:17–22

    Google Scholar 

  • Farrell RL, Murtagh KE, Tien M, Mozuch MD, Kirk TK (1989) Physical and enzymatic properties of lignin peroxidase isozymes from Phanerochaete chrysosporium. Enzyme Microb Technol 11:322–328

    Google Scholar 

  • Gold MH, Kuwahara M, Chiu AA, Glenn JK (1984) Purification and characterization of an extracellular H2O2-requiring diaryl-propane oxygenase from the white rot basidiomycete, Phanerochaete chrysosporium. Arch Biochem Biophys 234:353–362

    Google Scholar 

  • Jönsson L, Karlsson O, Lundquist K, Nyman PO (1989) Trametes versicolor ligninase: isozyme sequence homology and substrate specificity. FEBS 247:143–146

    Google Scholar 

  • Kantelinen A, Waldner R, Niku-Paavola M-L, Leisola MSA (1988) Comparison of two lignin-degrading fungi: Phlebia radiata and Phanerochaete chrysosporium. Appl Microbiol Biotechnol 28:193–198

    Google Scholar 

  • Kimura Y, Asada Y, Kuwahara M (1990) Screening of basidiomycetes for lignin peroxidase genes using a DNA probe. Appl Microbiol Biotechnol 32:436–442

    Google Scholar 

  • Kirk TK, Kersten PJ, Mozuch MD, Kalyanaraman B (1986) Ligninase of Phanerochaete chrysosporium. Mechanism of its degradation of the non-phenolic arylglycerol β-aryl ether substructure of lignin. Biochem J 236:279–287

    Google Scholar 

  • Langford CJ, Gallwitz D (1983) Evidence for an intron-contained sequence required for the splicing of yeast RNA polymerase transcripts. Cell 33:519–527

    Google Scholar 

  • Mizusawa S, Nishimura S, Seela F (1986) Improvement of the dideoxy chain terminator method of DNA sequencing by use of deoxy-7 deazaguanosine triphosphate in place of dGTP. Nucleic Acids Res 14:1319–1324

    Google Scholar 

  • Niku-Paavola M-L, Karhunen E, Salola P, Raunio V (1988) Ligninolytic enzymes of the white-rot fungus Phlebia radiata. Biochem J 254:877–884

    Google Scholar 

  • Smith TL, Schalch H, Gaskell J, Covert S, Cullen D (1988) Nucleotide sequence of a ligninase gene from Phanerochaete chrysosporium. Nucleic Acids Res 16:1219

    Google Scholar 

  • Tien M, Kirk TK (1984) Lignin-degrading enzyme from Phanerochaete chrysosporium: purification, characterization, and catalytic properties of a unique H2O2-requiring oxygenase. Proc Natl Acad Sci USA 81:2280–2284

    Google Scholar 

  • Tien M, Tu C-PD (1987a) Cloning and sequencing of cDNA for a ligninase from Phanerochaete chrysosporium. Nature 326:520–523

    Google Scholar 

  • Tien M, Tu C-PD (1987b) Cloning and sequencing of a cDNA for a ligninase from Phanerochaete chrysosporium. Nature 328:742

    Google Scholar 

  • Yelton MH, Hamer JE, Timberlake WE (1984) Transformation of Aspergillus nidulans by using a trpC plasmid. Proc Natl Acad Sci USA 81:1470–1474

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Offprint requests to: M. Kuwahara

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kimura, Y., Asada, Y., Oka, T. et al. Molecular analysis of a Bjerkandera adusta lignin peroxidase gene. Appl Microbiol Biotechnol 35, 510–514 (1991). https://doi.org/10.1007/BF00169758

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00169758

Keywords

Navigation