Skip to main content
Log in

Molecular characterization of laccase genes from the basidiomycete Trametes hirsuta Bm-2 and analysis of the 5′ untranslated region (5′UTR)

  • Original Article
  • Published:
3 Biotech Aims and scope Submit manuscript

Abstract

The aim of this study was to identify and characterize laccase genes produced by Trametes hirsuta Bm-2 in a liquid medium, both with and without induction. The amplification of 5′and 3′regions of laccase sequences was obtained by the RACE-PCR method, and these were assembled to obtain a cDNA of total length. Two new laccase genes were isolated from basal medium (lac-B) and lignocellulosic grapefruit substrate (lac-T), both encoding open reading frames of 2566 bp. Both laccase-predicted proteins consisted of 521 amino acids, four copper-binding regions, a signal peptide, and five potential glycosilation sites (Asn-Xaa-Ser/Tre). Moreover, the deduced amino acid sequences share about 76–85% identity with other laccases of WRF. Sequence comparison showed 47 synonymous point mutations between lac-B and lac-T. In addition, 5′ untranslated regions (UTR) of laccase genes lac-B and lac-T showed differences in length and number of regulatory elements that may affect transcriptional or translational expression of these genes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig.  4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Altschul SF, Madden TL, Schäffer AA et al (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  CAS  Google Scholar 

  • Asgher M, Yasmeen Q, Iqbal HMN (2014) Development of novel enzymatic bioremediation process for textile industry effluents through response surface methodology. Ecol Eng 63:1–11

    Article  Google Scholar 

  • Baldrian P (2006) Fungal laccases–occurrence and properties. FEMS Microbiol Rev 30:215–242

    Article  CAS  Google Scholar 

  • Barrett LW, Fletcher S, Wilton SD (2013) Untranslated gene regions and other non-coding elements. In: Untranslated Gene Regions and Other Non-coding Elements. Springer, pp 1–56

  • Bradnam KR, Korf I (2008) Longer first introns are a general property of eukaryotic gene structure. PLoS ONE 3:e3093

    Article  Google Scholar 

  • Brijwani K, Rigdon A, Vadlani PV (2010) Fungal laccases: production, function, and applications in food processing. Enzyme Res 2010:149748

    Article  Google Scholar 

  • Bruno VM, Wang Z, Marjani SL et al (2010) Comprehensive annotation of the transcriptome of the human fungal pathogen Candida albicans using RNA-seq. Genome Res. 20(10):1451–1458

    Article  CAS  Google Scholar 

  • Bulter T, Alcalde M, Sieber V et al (2003) Functional expression of a fungal laccase in Saccharomyces cerevisiae by directed evolution. Appl Environ Microbiol 69:987–995

    Article  CAS  Google Scholar 

  • Dmitriev SE, Andreev DE, Ad’ianova ZV et al (2009) Efficient cap-dependent in vitro and in vivo translation of mammalian mRNAs with long and highly structured 5′-untranslated regions. Mol Biol (Mosk) 43:119–125

    Article  CAS  Google Scholar 

  • Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797

    Article  CAS  Google Scholar 

  • Feng BZ, Li PQ, Fu L, Yu XM (2015) Exploring laccase genes from plant pathogen genomes: a bioinformatic approach. Genet Mol Res 14:14019–14036

    Article  CAS  Google Scholar 

  • Ganapathi M, Srivastava P, Das Sutar SK et al (2005) Comparative analysis of chromatin landscape in regulatory regions of human housekeeping and tissue specific genes. BMC Bioinform 6:126

    Article  Google Scholar 

  • Givaudan A, Effosse A, Faure D et al (1993) Polyphenol oxidase in Azospirillum lipoferum isolated from rice rhizosphere: evidence for laccase activity in non-motile strains of Azospirillum lipoferum. FEMS Microbiol Lett 108:205–210

    Article  CAS  Google Scholar 

  • Gupta R, Brunak S (2001) Prediction of glycosylation across the human proteome and the correlation to protein function. In: Biocomputing 2002. World Scientific, pp 310–322

  • Jin W, Li J, Feng H et al (2018) Importance of a laccase gene (Lcc1) in the development of Ganoderma tsugae. Int J Mol Sci 19:471

    Article  Google Scholar 

  • Kalyani D, Tiwari MK, Li J et al (2015) A highly efficient recombinant laccase from the yeast Yarrowia lipolytica and its application in the hydrolysis of biomass. PLoS ONE 10:e0120156

    Article  Google Scholar 

  • Kandasamy S, Muniraj IK, Purushothaman N et al (2016) High level secretion of laccase (LccH) from a newly isolated white-rot basidiomycete, Hexagonia hirta MSF2. Front Microbiol 7:707

    Article  Google Scholar 

  • Kikin O, D’Antonio L, Bagga PS (2006) QGRS Mapper: a web-based server for predicting G-quadruplexes in nucleotide sequences. Nucleic Acids Res 34:W676–W682

    Article  CAS  Google Scholar 

  • Kim J-K, Lim S-H, Kang H-W (2013) Cloning and characterization of a novel laccase gene, fvlac7, based on the genomic sequence of Flammulina velutipes. Mycobiology 41:37–41

    Article  CAS  Google Scholar 

  • Kim H-I, Kwon O-C, Kong W-S et al (2014) Genome-wide identification and characterization of novel laccase genes in the white-rot fungus Flammulina velutipes. Mycobiology 42:322–330

    Article  Google Scholar 

  • Kirk TK, Croan S, Tien M et al (1986) Production of multiple ligninases by Phanerochaete chrysosporium: effect of selected growth conditions and use of a mutant strain. Enzyme Microb Technol 8:27–32

    Article  CAS  Google Scholar 

  • Kochetov AV, Ischenko IV, Vorobiev DG et al (1998) Eukaryotic mRNAs encoding abundant and scarce proteins are statistically dissimilar in many structural features. FEBS Lett 440:351–355

    Article  CAS  Google Scholar 

  • Kolekar P, Pataskar A, Kulkarni-Kale U et al (2016) IRESPred: web server for prediction of cellular and viral internal ribosome entry site (IRES). Sci Rep 6:27436

    Article  CAS  Google Scholar 

  • Kozak M (1989) The scanning model for translation: an update. J Cell Biol 108:229–241

    Article  CAS  Google Scholar 

  • Kumar SVS, Phale PS, Durani S, Wangikar PP (2003) Combined sequence and structure analysis of the fungal laccase family. Biotechnol Bioeng 83:386–394

    Article  CAS  Google Scholar 

  • Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874

    Article  CAS  Google Scholar 

  • Kunamneni A, Plou FJ, Ballesteros A, Alcalde M (2008) Laccases and their applications: a patent review. Recent Pat Biotechnol 2:10–24

    Article  CAS  Google Scholar 

  • Lin Z, Li W-H (2011) Evolution of 5′ untranslated region length and gene expression reprogramming in yeasts. Mol Biol Evol 29:81–89

    Article  Google Scholar 

  • Mignone F, Gissi C, Liuni S, Pesole G (2002) Untranslated regions of mRNAs. Genome Biol 3:0004

    Article  Google Scholar 

  • Morozova OV, Shumakovich GP, Shleev SV, Yaropolov YI (2007) Laccase-mediator systems and their applications: a review. Appl Biochem Microbiol 43:523–535

    Article  CAS  Google Scholar 

  • Nagalakshmi U, Wang Z, Waern K et al (2008) The transcriptional landscape of the yeast genome defined by RNA sequencing. Science. 320:1344–1349

    Article  CAS  Google Scholar 

  • Nielsen H (2017) Predicting secretory proteins with SignalP. Protein Funct Predict Methods Protoc. 1:59–73

    Article  Google Scholar 

  • Palanisamy S, Ramaraj SK, Chen S-M et al (2017) A novel laccase biosensor based on laccase immobilized graphene-cellulose microfiber composite modified screen-printed carbon electrode for sensitive determination of catechol. Sci Rep 7:41214

    Article  CAS  Google Scholar 

  • Park Y-J, Yoon D-E, Kim H-I et al (2014) Overproduction of laccase by the white-rot fungus Pleurotus ostreatus using apple pomace as inducer. Mycobiology 42:193–197

    Article  Google Scholar 

  • Pickering BM, Willis AE (2005) The implications of structured 5′ untranslated regions on translation and disease. In: Seminars in cell & developmental biology. Elsevier, New York, pp 39–47

  • Tapia-Tussell R, Pérez-Brito D, Rojas-Herrera R et al (2011) New laccase-producing fungi isolates with biotechnological potential in dye decolorization. Afr J Biotechnol 10:10134–10142

    Article  CAS  Google Scholar 

  • Teerapatsakul C, Abe N, Bucke C et al (2007) Novel laccases of Ganoderma sp. KU-Alk4, regulated by different glucose concentration in alkaline media. World J Microbiol Biotechnol 23:1559–1567

    Article  CAS  Google Scholar 

  • Téllez-Jurado A, Arana-Cuenca A, Becerra AEG et al (2006) Expression of a heterologous laccase by Aspergillus niger cultured by solid-state and submerged fermentations. Enzyme Microb Technol 38:665–669

    Article  Google Scholar 

  • Terrón MC, González T, Carbajo JM et al (2004) Structural close-related aromatic compounds have different effects on laccase activity and on lcc gene expression in the ligninolytic fungus Trametes Trametes sp. I-62. Fungal Genet Biol 41:954–962

    Article  Google Scholar 

  • Thurston CF (1994) The structure and function of fungal laccases. Microbiology 140:19–26

    Article  CAS  Google Scholar 

  • Uthandi S, Saad B, Humbard MA, Maupin-Furlow JA (2010) LccA, an archaeal laccase secreted as a highly stable glycoprotein into the extracellular medium by Haloferax volcanii. Appl Environ Microbiol 76:733–743

    Article  CAS  Google Scholar 

  • Vasina DV, Mustafaev ON, Moiseenko KV et al (2015) The Trametes hirsuta 072 laccase multigene family: genes identification and transcriptional analysis under copper ions induction. Biochimie 116:154–164

    Article  CAS  Google Scholar 

  • Viswanath B, Rajesh B, Janardhan A et al (2014) Fungal laccases and their applications in bioremediation. Enzyme Res 2014:163242

    Article  Google Scholar 

  • Vite-Vallejo O, Palomares LA, Dantán-González E et al (2009) The role of N-glycosylation on the enzymatic activity of a Pycnoporus sanguineus laccase. Enzyme Microb Technol 45:233–239

    Article  CAS  Google Scholar 

  • Wang W, Liu F, Jiang Y et al (2015) The multigene family of fungal laccases and their expression in the white rot basidiomycete s. Flammulina velutipes. Gene 563:142–149

    Article  CAS  Google Scholar 

  • Yang J, Xu X, Ng TB et al (2016) Laccase gene family in Cerrena sp. HYB07: sequences, heterologous expression and transcriptional analysis. Molecules 21:1017

    Article  Google Scholar 

  • Zapata-Castillo P, Villalonga-Santana M, Tamayo-Cortés J et al (2012) Purification and characterization of laccase from Trametes hirsuta Bm-2 and its contribution to dye and effluent decolorization. Afr J Biotechnol 11:3603–3611

    CAS  Google Scholar 

  • Zapata-Castillo P, Villalonga-Santana L, Islas-Flores I et al (2015) Synergistic action of laccases from Trametes hirsuta Bm2 improves decolourization of indigo carmine. Lett Appl Microbiol 61:252–258

    Article  CAS  Google Scholar 

  • Zhou YP, Chen QH, Xiao YN et al (2014) Gene cloning and characterization of a novel laccase from the tropical white-rot fungus Ganoderma weberianum TZC-1. Appl Biochem Microbiol 50:500–507

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The authors wish to express their gratitude to National Science and Technology Council, Mexico (CONACYT) for providing the financial support for this research (Project No. 248295).

Author information

Authors and Affiliations

Authors

Contributions

All the authors contributed to this work. Tapia-Tussell and Solis-Pereira conceived, designed and wrote the paper; Pereira-Patron performed the experiments and analyzed the data; Lizama-Uc, Perez-Brito and Ramirez-Prado participated in the data analysis of untranslated region and writing of the paper. All authors reviewed and approved the manuscript.

Corresponding author

Correspondence to Raul Tapia-Tussell.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest regarding publication of this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pereira-Patrón, A., Solis-Pereira, S., Lizama-Uc, G. et al. Molecular characterization of laccase genes from the basidiomycete Trametes hirsuta Bm-2 and analysis of the 5′ untranslated region (5′UTR). 3 Biotech 9, 160 (2019). https://doi.org/10.1007/s13205-019-1691-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13205-019-1691-y

Keywords

Navigation