Skip to main content
Log in

Inhibition of tumor invasion and extracellular matrix degradation by ubenimex (bestatin)

  • Published:
Clinical & Experimental Metastasis Aims and scope Submit manuscript

Abstract

We have investigated the effect of the immunomodulator ubenimex (hereafter referred to as bestatin) on the enzymatic degradation of the extracellular matrix by human renal cell carcinoma SN12M cells during the invasive process. The invasion of SN12M cells into reconstituted basement membrane (Matrigel) was inhibited by the presence of bestatin in a concentration-dependent manner. However, bestatin did not have any effect on tumor cell adhesion and migration to the extracellular matrices which may be involved in tumor cell invasion. Bestatin inhibited the degradation of type IV collagen by tumor cells, but not by tumor-conditioned medium (TCM), in a concentration-dependent manner. We also found that bestatin inhibited hydrolysing activities towards substrates of aminopeptidases in SN12M cells. Since bestatin was found to inhibit aminopeptidase activity, the inhibition of tumor invasion by bestatin is likely to be associated with its action as an enzyme inhibitor. Bestatin only slightly inhibited tumor cell plasmin activity, which can lead to the conversion of the latent collagenase to the active form, but this slight effect was not significant. The zymography of TCM from SN12M cells showed that the treatment of tumor cells with bestatin resulted in the disappearance of the 68 kDa type IV collagenase-enzyme level (active form) and slight reduction of the 72 kDa type IV collagenase-enzyme level (latent form). These results indicated that bestatin may inhibit tumor cell invasion through a mechanism involving its inhibitory action on aminopeptidases in tumor cells, suggesting that the aminopeptidase may partly be associated with the conversion of a latent form of type IV procollagenase to an active form or the secretion of the collagenases from tumor cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fidler IJ, 1990, Critical factors in the biology of human cancer metastasis: twenty-eighth G.H.A. Clowes Memorial Award Lecture. Cancer Research, 50, 6130–6138.

    PubMed  CAS  Google Scholar 

  2. Fidler IJ, Gersten DM and Hart IR, 1978, The biology of cancer invasion and metastases. Advances in Cancer Research, 28, 149–250.

    PubMed  CAS  Google Scholar 

  3. Liotta LA, Rao CV and Barsky SH, 1983, Tumor invasion and the extracellular matrix. Laboratory Investigation, 49, 639–649.

    Google Scholar 

  4. McCarthy JB, Basara ML, Palm SL, Sas DF and Furcht LT, 1985, The role of cell adhesion proteins-laminin and fibronectin—in the movement of malignant and metastatic cells. Cancer and Metastasis Reviews, 4, 125–152.

    Article  PubMed  CAS  Google Scholar 

  5. Moscatelli D and Rifkin DB, 1988, Membrane and matrix localization of proteinases—a common theme in tumor cell invasion and angiogenesis. Biochimica et Biophysica Acta, 948, 67–85.

    PubMed  CAS  Google Scholar 

  6. Nicolson GL, 1987, Tumor cell instability, diversification, and progression to the metastatic phenotype: from oncogene to oncofetal expression. Cancer Research, 47, 1473–1487.

    PubMed  CAS  Google Scholar 

  7. Poste G and Fidler IJ, 1979, The pathogenesis of cancer metastasis. Nature, 283, 139–146.

    Article  Google Scholar 

  8. Strauli P and Haemmerli G, 1984, The role of cell motility in invasion. Cancer and Metastasis Reviews, 3, 127–141.

    Article  PubMed  CAS  Google Scholar 

  9. Tryggvason K, Hoyhtya M and Salo T, 1987, Proteolytic degradation of extracellular matrix in tumor invasion. Biochimica et Biophysica Acta, 907, 191–217.

    PubMed  CAS  Google Scholar 

  10. Weiss L, 1985, Principles of Metastasis (Orlando: Academic Press).

    Google Scholar 

  11. Kuramochi H, Motegi A, Iwabuchi M, Takahashi K, Horinishi H and Umezawa H, 1987, Action of ubenimex on aminopeptidase activities in spleen cells and peritoneal macrophages from mice. Journal of Antibiotics, 40, 1605–1611.

    PubMed  CAS  Google Scholar 

  12. Leyhausen G, Schuster DK, Vaith P, Zahn RK, Umezawa H, Falke D and Muller WEG, 1983, Identification and properties of the cell membrane bound leucine aminopeptidase interacting with potential immunostimulant and chemotherapeutic agent bestatin. Biochemical Pharmacology, 32, 1051–1057.

    Article  PubMed  CAS  Google Scholar 

  13. Suda H, Aoyagi T, Takeuchi T and Umezawa H, 1976, Inhibition of aminopeptidase B and leucine aminopeptidase by bestatin and its stereoisomers. Archives of Biochemistry and Biophysics, 177, 196–200.

    Article  PubMed  CAS  Google Scholar 

  14. Abe F, Shibuya K, Uchida M, Takahashi K, Horinishi H, Matsuda A, Ishizuka M, Takeuchi T and Umezawa H, 1984, Effect of bestatin on syngeneic tumors in mice. Gann, 75, 89–94.

    PubMed  CAS  Google Scholar 

  15. Ikeda S, Miyasato H, Saito K, Nakayama H and Tajima K, 1981, Phase I study of bestatin, (II) clinical trial of bestatin in malignant skin tumors. In Small Molecular Immunomodifiers of Microbial Origin, edited by H. Umezawa (New York: Pergamon Press), pp. 143–158.

    Google Scholar 

  16. Ishizuka M, Masuda T, Kanbayashi N, Fukusawa S, Takeuchi T, Aoyagi T and Umezawa H, 1980, Effect of bestatin on mouse immune system and experimental murine tumors. Journal of Antibiotics, 33, 642–652

    PubMed  CAS  Google Scholar 

  17. Majima H, 1981, Phase I and preliminary phase II clinical trials of bestatin. In Small Molecular Immunomodifiers of Microbial Origin, edited by H. Umezawa (New York: Pergamon Press), pp. 173–178.

    Google Scholar 

  18. Miwa H, Oka T, Tsurumi T, Sakae Y and Orita K, 1982, Experimental and clinical studies of bestatin as an immunomodulator. Japanese Journal of Cancer Chemotherapy, 9, 1019–1024.

    CAS  Google Scholar 

  19. Schlorlemmer H-U, Bosslet K, Dickneite G, Luben G and Sedlacek HH, 1984, Studies on the mechanisms of action of the immunomodulator bestatin in various screening test systems. Behring Institute Mitteilung, 74, 157–173.

    Google Scholar 

  20. Bruley-Rosset M, Florentin I, Kiger N, Schulz J and Mathe G, 1979, Restoration of impaired immune functions of aged animals by chronic bestatin treatment. Immunology, 38, 75–83.

    PubMed  CAS  Google Scholar 

  21. Dunlap BE, Dunlap SA and Rich DH, 1984, Effect of bestatin on in vitro responses of murine lymphocytes to T-cell stimuli. Scandinavian Journal of Immunology, 20, 237–245.

    Article  PubMed  CAS  Google Scholar 

  22. Saito K, Takegoshi K, Aoyagi T, Umezawa H and Nagai Y, 1978, Stimulatory effect of bestatin, a new specific inhibitor of aminopeptidase, on the blasto genesis of guinea pig lymphocytes. Cellular Immunology, 40, 242–262.

    Article  Google Scholar 

  23. Schoremmer H-U, Bosslet K and Sedlacek HH, 1983, The ability of the immunomodulating dipeptide bestatin to activate cytotoxic mononuclear phagocytes. Cancer Research, 43, 4148–4153.

    Google Scholar 

  24. Talmadge JE, Lenz BF, Pennington R, Long C, Philips H, Schneider M and Tribble H, 1986, Immunomodulatory and therapeutic properties of bestatin in mice. Cancer Research, 46, 4505–4510.

    PubMed  CAS  Google Scholar 

  25. Naito S, Von Eschenbach AC and Fidler IJ, 1987, Different growth pattern and biologic behavior of human and renal cell carcinoma implanted into different organs of nude mice. Journal of the National Cancer Institute, 78, 377–385.

    PubMed  CAS  Google Scholar 

  26. Naito S, Walker SM and Fidler IJ, 1989, In vivo selection of human renal cell carcinoma cells with high metastatic potential in nude mice. Clinical and Experimental Metastasis, 7, 381–389.

    Article  PubMed  CAS  Google Scholar 

  27. Nakajima M, Welch DR, Belloni PN and Nicolson GL, 1987, Degradation of basement membrane type IV collagen and lung subendothelial matrix by rat mammary adenocarcinoma cell clone of differing metastatic potentials. Cancer Research, 47, 4869–4876.

    PubMed  CAS  Google Scholar 

  28. Saiki I, Iida J, Murata J, Ogawa R, Nishi N, Sugimura K, Tokura S and Azuma I, 1989, Inhibition of the metastasis of murine malignant melanoma by synthetic polymeric peptides containing core sequence of cell-adhesive molecules. Cancer Research, 49, 3815–3822.

    PubMed  CAS  Google Scholar 

  29. Saiki I, Murata J, Nishi N, Sugimura K and Azuma I, 1989, The inhibition of murine lung metastasis by synthetic polypeptides [poly(arg-gly-asp) and poly (tyr-ile-gly-ser-arg)] with a core sequence of cell adhesion molecures. British Journal of Cancer, 59, 194–197.

    PubMed  CAS  Google Scholar 

  30. Saiki I, Murata J, Iida J, Sakurai T, Nishi M, Matsumoto K and Azuma I, 1989, Antimetastatic effects of synthetic polypeptides containing repeated structures of the cell adhesive Arg-Gly-Asp (RGD) and Tyr-Ile-Gly-Ser-Arg (YIGSR) sequences. British Journal of Cancer, 60, 722–728.

    PubMed  CAS  Google Scholar 

  31. McCarthy JB and Furcht LT, 1984, Laminin and fibronectin promote the haptotactic migration of B16 mouse melanoma cells in vitro. Journal of Cell Biology, 98, 1474–1480.

    Article  PubMed  CAS  Google Scholar 

  32. Albini A, Iwamoto Y, Kleinman HK, Martin GR, Aaronson SA, Kozlowski JM and McEwan RN, 1987, A rapid in vitro assay for quantitating the invasive potential of tumor cells. Cancer Research, 47, 3239–3245.

    PubMed  CAS  Google Scholar 

  33. Heussen C and Dowdle EB, 1980, Electrophoretic analysis of plasminogen activators in polyacrylamide gels containing sodium dodecyl sulfate and copolymerized substrates. Analytical Biochemistry, 102, 196–202.

    Article  PubMed  CAS  Google Scholar 

  34. Liotta LA, Abe S, Gehron PR and Martin GR, 1979, Preferential digestion of membrane collagen by an enzyme derived from a metastatic tumor. Proceedings of the National Academy of Science, U. S. A, 76, 2268–2272.

    Article  CAS  Google Scholar 

  35. Liotta LA, Tryggvason K, Garbisa S, Hart I, Foltz CM and Shafie S, 1980, Metastatic potential correlates with enzymatic degradation of basement membrane collagen. Nature, 284, 67–68.

    Article  PubMed  CAS  Google Scholar 

  36. Nicolson GL, 1989, Metastatic tumor cell interactions with endothelium, basement membrane and tissue. Current Opinion in Cell Biology, 1, 1009–1019.

    Article  PubMed  CAS  Google Scholar 

  37. Goldfarb RH, Murano G, Brundage R, Siegal GP, Terranova V, Garbisa S and Liotta LA, 1986, Degradation of glycoprotein and collagenous components of the basement membrane: studies with urokinase-type plasminogen activator, -thrombin and plasmin. Seminar in Thrombosis and Hemostasis, 2, 335–336.

    Article  Google Scholar 

  38. Salo T, Liotta LA, Keski-Oja J, Turpeennieml-Hujamen T and Tryggvason K, 1982, Secretion of basement membrane collagen degrading enzyme and plasminogen activator by transformed cells-role in metastasis. International Journal of Cancer, 30, 669–673.

    Article  CAS  Google Scholar 

  39. Liotta LA, Goldfarb RH, Brundage R, Siegal GK, Terranova V and Garbisa S, 1981, Effect of plasminogen activator (urokinase), plasmin, and thrombin on glycoprotein and collagenous components of basement membrane. Cancer Research, 41, 4629–4636.

    PubMed  CAS  Google Scholar 

  40. Amoscato AA, Stamkoski RM, Babcock GF and Alexander JW, 1990, Neutral surface amino-peptidase activity of human tumor cell lines. Biochimica et Biophysica Acta, 1041, 317–319.

    PubMed  CAS  Google Scholar 

  41. Ashmun RA and Look AT, 1990, Metalloproteinase activity of CD13/aminopeptidase N on the surface of human myeloid cells. Blood, 75, 462–469.

    PubMed  CAS  Google Scholar 

  42. Morahan PS, Edelson PJ and Gass K, 1980, Changes in macrophages ectoenzymes associated with antitumor activity. Journal of Immunology, 125, 1312–1317.

    CAS  Google Scholar 

  43. Wachsmuth ED, 1975, Aminopeptidase as a marker for macrophage differentiation. Experimental Cell Research, 96, 409–412.

    Article  PubMed  CAS  Google Scholar 

  44. Gorvel J-F, Viver I, Naquet P, Brekelmans P, Rigal A and Pierres M, 1990, Characterization of the neutral aminopeptidase activity associated to the mouse thymocyte-activating molecules. Journal of Immunology, 144, 2899–2907.

    CAS  Google Scholar 

  45. Poole AR, Tutman KJ, Recklies AD and Stoker TA, 1978, Differences in secretion of the proteinase cathepsin B at the edges of human breast carcinomas and fibroadenomas. Nature, 273, 545–547.

    Article  PubMed  CAS  Google Scholar 

  46. Recklies AD, Mort JS and Poole AR, 1982, Secretion of a thiol proteinase from mouse mammary carcinomas and its characterization. Cancer Research, 42, 1026–1032.

    PubMed  CAS  Google Scholar 

  47. Sloane BF, Honn KV, Sadler JC, Turner WA, Kimpson JJ and Taylor JD, 1982, Cathepsin B activity in B16 melanoma cells: a possible marker for metastasic potential. Cancer Research, 42, 980–986.

    PubMed  CAS  Google Scholar 

  48. Eisenbach L, Segal S and Feldman M, 1985, Proteolytic enzymes in tumor metastasis. II. Collagenase type IV activity in subcellular fractions of cloned tumor cell populations. Journal of the National Cancer Institute, 74, 87–93.

    PubMed  CAS  Google Scholar 

  49. Robertson DM and Williams DC, 1969, In vitro evidence for neutral collagenase activity in an invasive mammalian tumor. Nature, 221, 259–260.

    Article  PubMed  CAS  Google Scholar 

  50. Dano K, Andreasen PA, Grondahl-Hansen J, Kristensen P, Nielsen LS and Skriver L, 1985, Plasminogen activators, tissue degradation and cancer. Advances in Cancer Research, 44, 139–266.

    Article  PubMed  CAS  Google Scholar 

  51. Chop AM, Nakajima M and Nicolson GL, 1989, Metastatic mammary adenocarcinoma cell lines expressed elevated levels of plasma membrane cathepsin H-like and aminopeptidase-like activities. Proceeding of the American Association for Cancer Research, 30, 98.

    Google Scholar 

  52. Suzuki K, Enghild JJ, Morodomi T, Salvesen G and Nagase H, 1990, Mechanisms of activation of tissue procollagenase by matrix metalloproteinase 3 (stromelysin). Biochemistry, 29, 10261–10270.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yoneda, J., Saiki, I., Fujii, H. et al. Inhibition of tumor invasion and extracellular matrix degradation by ubenimex (bestatin). Clin Exp Metast 10, 49–59 (1992). https://doi.org/10.1007/BF00163576

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00163576

Keywords

Navigation