Skip to main content
Log in

The role of cancer cell motility in invasion

  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Brecher G: On the nomenclature of white cell movements: Blood Cells 2: 473–477, 1976.

    Google Scholar 

  2. Haemmerli G: Cell motility and cell shape. In: Motility, shape and fibrillar organelles of normal and neoplastic cells. Proc of a Workshop of the EORTC Tumor Invasion Project Group. Europ J Cancer 16: 1–2, 1980.

    Google Scholar 

  3. Couchman JR, Rees DA: The behaviour of fibroblasts migrating from chick heart explants: changes in adhesion, locomotion and growth, and in the distribution of actomyosin and fibronectin. J Cell Sci 39: 149–165, 1979.

    Google Scholar 

  4. Badley RA, Couchman JR, Rees DA: Comparison of the cell cytoskeleton in migratory and stationary chick fibroblasts. J Musc Res Cell Motility 1: 5–14, 1980.

    Google Scholar 

  5. Herman IM, Crisona NJ, Pollard TD: Relation between cell activity and the distribution of cytoplasmic actin and myosin. J Cell Biol 90: 84–91, 1981.

    Google Scholar 

  6. Haemmerli G, Jockusch BM, Sträuli P: Cellular motility and cytoskeletal arrangement in human squamous carcinoma cells. J Submicrosc Cytol 16: 169–170, 1984.

    Google Scholar 

  7. Couchman JR, Badley RA, Rees DA: Redistribution of microfilament-associated proteins during the formation of focal contacts and adhesion in chick fibroblasts. J Muscle Res Cell Mot 4: 647–661, 1983.

    Google Scholar 

  8. Burridge K: Are stress fibers contractile? Nature 294: 691–692, 1981.

    Google Scholar 

  9. Chen WT: Mechanism of retraction of the trailing edge during fibroblast movement. J Cell Biol 90: 187–200, 1981.

    Google Scholar 

  10. Curtis ASG: The mechanism of adhesion to glass, a study by interference reflection microscopy. J Cell Biol 20: 199–215, 1964.

    Google Scholar 

  11. Ploem JS: Reflection contrast microscopy as a tool for investigation of the attachment of living cell to a glass surface. In: Van Furth (ed) Mononuclear phagocytes in immunity, infection and pathology. Blackwell Scientific Publications, Oxford, 1975, pp 404–421.

    Google Scholar 

  12. Izzard CS, Lochner LR: Cell-to-substrate contacts in living fibroblasts: An interference reflection study with an evaluation of the technique. J Cell Sci 21: 129–159, 1976.

    Google Scholar 

  13. Bereiter-Hahn J, Fox CH, Thorell B: Quantitative reflection contrast microscopy of living cells. J Cell Biol 82: 767–779, 1979.

    Google Scholar 

  14. Beck K, Bereiter-Hahn J: Evaluation of reflection interference contrast microscope images of living cells. Microscopica Acta 84: 153–178, 1981.

    Google Scholar 

  15. Gingell D: The interpretation of interference-reflection images of spread cells: Significant contributions from thin peripheral cytoplasm. J Cell Sci 49: 237–247, 1981.

    Google Scholar 

  16. Haemmerli G, Sträuli P, Ploem JS: Cell-to-substrate adhesions during spreading and locomotion of carcinoma cells. Exp Cell Res 128: 249–256, 1980.

    Google Scholar 

  17. Haemmerli G, Sträuli P: In vitro motility of cells from human epidermoid carcinomas. A study by phase-contrast and reflection-contrast microscopy. Int J Cancer 27: 603–610, 1981.

    Google Scholar 

  18. Radice GP: Locomotion and cell-substratum contacts of Xenopus epidermal cells in vitro and in situ. J Cell Sci 44: 201–223, 1980.

    Google Scholar 

  19. Haemmerli G, Arnold B, Sträuli P: Cellular motility on glass and in tissues: Similarities and dissimilarities. Cell Biol Int Rep 7: 709–725, 1983.

    Google Scholar 

  20. Haemmerli G, Ploem JS: Adhesion patterns of cell interactions revealed by reflection contrast microscopy. Exp Cell Res 118: 438–442, 1979.

    Google Scholar 

  21. Vasiliev JM, Gelfand IM: Neoplastic and normal cells in culture. Cambridge, Cambridge Univ Press, 1981.

    Google Scholar 

  22. Singer SI: The fibronexus. A transmembrane association of fibronectin containing fibers and bundles of 5 nm microfilaments in hamster and human fibroblasts. Cell 16: 675–685, 1975.

    Google Scholar 

  23. Rees DA, Lloyd CW, Thom D: Control of grip and stick in cell adhesion through lateral relationships of membrane glycoproteins. Nature 267: 124–128, 1977.

    Google Scholar 

  24. Trotter JA: The organization of actin in spreading macrophages. The actin-cytoskeleton of peritoneal macrophages is linked to the substratum via transmembrane connections. Exp Cell Res 132: 235–248, 1981.

    Google Scholar 

  25. Abercrombie M, Dunn GA, Heath JP: The shape and movement of fibroblasts in culture. In: Lash HW, Burger MM (eds) Cell and tissue interactions. Raven Press, New York, 1977, pp 57–70.

    Google Scholar 

  26. Heath JP, Dunn GA: Cell to substrate contacts of chick fibroblast and their relation to the microfilament system. A correlated interference-reflexion and high-voltage electronmicroscope study. J Cell Sci 29: 197–212, 1978.

    Google Scholar 

  27. Abercrombie M: The Croonian Lecture 1978. The crawling movement of metazoan cells. Proc R Soc Cond B 207: 129–147, 1980.

    Google Scholar 

  28. Dunn GA: The locomotory machinery of fibroblast. Europ J Cancer 16: 6–8, 1980.

    Google Scholar 

  29. Izzard CS, Lochner LR: Formation of cell-to-substrate contacts during fibroblast motility: an interference reflection study. J Cell Sci 42: 81–116, 1980.

    Google Scholar 

  30. Small IV, Celis JE, Isenberg G: Aspects of cell architecture and locomotion. In: Celis JE, Graessmann A, Coyter A (eds) Transfer of cell constituents into eukaryotic cells. Plenum Publishing Corporation, New York, 1980, pp 75–111.

    Google Scholar 

  31. Small JV, Rinnerthaler G, Hinssen H: Organization of actin meshworks in cultured cells: The leading edge. Cold Spring Harbor Symp on Quantitative Biol 46: 599–611, 1982.

    Google Scholar 

  32. Haemmerli G, Felix H: Morphologic aspects of the leading lamella in locomotive normal and neoplastic blood cells. A study by scanning electron microscopy. Blood Cells: 1984, in print.

  33. Abercrombie M, Heaysman JEM: Social behaviour of cells in tissue culture II. Monolayering of fibroblasts. Exp Cell Res 6: 293–306, 1954.

    Google Scholar 

  34. Heaysman JEM: Contact inhibition of locomotion: A reappraisal. Int Rev Cytol 55: 49–66, 1978.

    Google Scholar 

  35. Barski G, Belehradek JJr: Étude microcinématographique du mécanism d'invasion cancéreuse en culture de tissue normal associé aux cellules malignes. Exp Cell Res 37: 464–480, 1965.

    Google Scholar 

  36. Guelstein VI, Ivanova OY, Margolis LB, Vasiliev JM, Gelfand IM: Contact inhibition of movement in cultures of transformed cells. Proc Natl Acad Sci USA 70: 2011–2014, 1973.

    Google Scholar 

  37. Erickson CA: Both BHK and polyoma transformed BHK cells show contact inhibition of locomotion (Abstract). J Cell Biol 70: 250a, 1976.

  38. Bell BPJr: Locomotory behaviour, contact inhibition and pattern formation of 3T3 and polyoma virus transformed 3T3 cells in culture. J Cell Biol 74: 963–983, 1977.

    Google Scholar 

  39. Stephenson EM, Stephenson NG: Invasive locomotory behaviour between malignant human melanoma cells and normal fibroblasts filmed in vitro. J Cell Sci 32: 389–418, 1978.

    Google Scholar 

  40. Stoker MGP, Piggot D, Riddle P: Movement of human mammary tumour cells in culture: Exclusion of fibroblasts by epithelial territories. Int J Cancer 21: 268–273, 1978.

    Google Scholar 

  41. Lewis WH, Webster LT: Migration of lymphocytes in plasma cultures of human lymph nodes. J Exp Med 33: 261–269, 1921.

    Google Scholar 

  42. Haemmerli G, Felix H: Shape and motility, two interdependent features. SEM 1982, pp 731–739.

  43. Felix H, Haemmerli G, Sträuli P: Dynamic morphology of leukemia cells. A comparative study by scanning electron microscopy and microcinematography. Springer, Berlin, Heidelberg, New York, 1978.

    Google Scholar 

  44. Haemmerli G, Felix H, Sträuli P. Dynamic morphology applied to human and animal leukemia cells. Israel J Med Sci 15: 653–659, 1979.

    Google Scholar 

  45. Hayashi H, Yoshida K, Ozaki T, Ushijima K: Chemotactic factor associated with invasion of cancer cells. Nature 226: 174–175, 1970.

    Google Scholar 

  46. Ozaki T, Yoshida K, Ushijima K, Hayashi H: Studies on mechanisms of invasion in cancer. II. In vivo effects of a factor chemotactic for cancer cells. Int J Cancer 7: 93–100, 1971.

    Google Scholar 

  47. Varani J, Ward PA: Tumor cell chemotaxis. In: Liotta LA and Hart IR (eds) Tumor invasion and metastasis. Martinus Nijhoff, The Hague, Boston, London, 1982, pp 99–112.

    Google Scholar 

  48. Armstrong PB: Invasiveness of neutrophil leukocytes. In: de Brabander M, Mareel M, de Ridder C (eds) Cell movement and neoplasia. Pergamon Press, Oxford, 1979, pp 131–147.

    Google Scholar 

  49. Virchow R: Über bewegliche thierische Zellen. Arch path Anat Physiol 28: 237–240, 1863.

    Google Scholar 

  50. Grohe E: Netzknorpel-Chondrom mit contractilen Zellen. Virchows Arch 32: 445–449, 1865.

    Google Scholar 

  51. Carmalt WH: Bemerkungen zur Entwicklung der Carcinome nebst Beobachtungen über die spontane Bewegungsfähigkeit von Geschwulstzellen. Arch path Anat Physiol 55: 481–487, 1872.

    Google Scholar 

  52. Lambert RA, Hanes FM: Characteristic of growth of sarcoma and carcinoma cultivated in vitro. J Exp Med 12: 495–504, 1911.

    Google Scholar 

  53. Hanes FM, Lambert RA: Amöboide Bewegungen von Krebszellen als ein Faktor des invasiven und metastatischen Wachstums maligner Tumoren. Virchows Arch 209: 12–21, 1912.

    Google Scholar 

  54. Lambert RA, Hanes FM: Beobachtungen an Gewebskulturen in vitro. Virchows Arch 211: 89–116, 1913.

    Google Scholar 

  55. Lambert RA: Tissue culture in the investigation of cancer. J Cancer Res 1: 169–182, 1916.

    Google Scholar 

  56. Coman DR: Human neoplasms in tissue culture. Cancer Res 2: 618–625, 1942.

    Google Scholar 

  57. Coman DR: Mechanism of the invasiveness of cancer. Science 105: 347–348, 1947.

    Google Scholar 

  58. Enterline HT, Coman DR: The ameboid motility of human and animal neoplastic cells. Cancer 3: 1033–1038, 1950.

    Google Scholar 

  59. Coman DR: Mechanisms responsible for the origin and distribution of blood-borne tumor metastases. A review. Cancer Res 13: 397–404, 1953.

    Google Scholar 

  60. Coman DT: Adhesiveness and stickiness: Two independent properties of the cell surface. Cancer Res 21: 1436–1438, 1961.

    Google Scholar 

  61. Mareel MM: Invasion in vitro. Methods of analysis. Cancer Met Rev 2: 201–218, 1983.

    Google Scholar 

  62. Mareel MMK: Is invasiveness in vitro characteristic for malignant cells? Cell Biol Int Rep 3: 627–640, 1979.

    Google Scholar 

  63. Mareel M: Comparison of invasion in two-dimensional versus three-dimensional system. Europ J Cancer 16: 11–12, 1980.

    Google Scholar 

  64. Young JS, Lumsden CE, Stalker AL: The significance of the ‘tissue pressure’ of normal testicular and of neoplastic (Brown-Pearce carcinoma) tissue in the rabbit. J Path Bact 62: 313–333, 1950.

    Google Scholar 

  65. Bulter TP, Grantham FH, Gullino PM: Bulk transfer of fluid in the interstitial compartment of mammary tumors. Cancer Res 35: 3084–3088, 1975.

    Google Scholar 

  66. Gullino PM: Extracellular compartments of solid tumors. In: Becker F (ed) Cancer 3. A comprehensive treatise, biology of tumors, cellular biology and growth. Plenum Press, New York, London, 1975, pp 327–354.

    Google Scholar 

  67. Wiig H, Tveit E, Hultborn R, Reed RK, Weiss L: Interstitial fluid pressure in DMBA-induced rat mammary tumours. Scand J Clin Lab Invest 42: 159–164, 1982.

    Google Scholar 

  68. Reinhold HS: Improved microcirculation in irradiated tumours. Europ J Cancer 7: 273–280, 1971.

    Google Scholar 

  69. Peterson W: Beiträge zur Lehre vom Carcinom. 1. Über Aufbau. Wachstum und Histogenese der Hautcarcinome. Beitr Klin Chir 32: 543–654, 1902.

    Google Scholar 

  70. Schiller W, Daro AF, Gollin HA, Primiano N: Small preulcerative invasive carcinoma of the cervix: The spray carcinoma. Am J Obst+Gynec 65: 1088–1098, 1953.

    Google Scholar 

  71. Hamperl H: Definition and classification of the so-called carcinoma in situ. In: Ciba Foundation Study Group. Cancer of the cervix. Churchill, London, 1959, pp 2–15.

    Google Scholar 

  72. Ober KG, Kaufmann C, Hamperl H: Carcinoma in situ, beginnendes Karzinom und klinischer Krebs der Cervix uteri. Geburtsh Frauenheilk 21: 259–297, 1961.

    Google Scholar 

  73. Hamperl H: Über das infiltrierende (invasive) Tumor-wachstum (Untersuchungen am Carcinom und am sog, carcinoma in situ). Virchow's Arch Pathol Anat 340: 185–205, 1966.

    Google Scholar 

  74. Hamperl H: Early invasive growth as seen in uterine cancer and the role of the basal membrane. In: Denoix P (ed) Mechanisms of invasion in cancer. Springer, Berlin, Heidelberg, New York, 1967, pp 17–25.

    Google Scholar 

  75. Burghardt E: Early histological diagnosis of cervical cancer. Thieme, Stuttgart, 1973.

    Google Scholar 

  76. Lohe KJ: Early squamous cell carcinoma of the uterine cervix. Gynec Oncol 6: 10–30, 1978.

    Google Scholar 

  77. Fettig O: Zur morphologischen und klinischen Problematik des Mikrocarcinoms (Collumcarcinom Stadium) (a). Arch Gynäk 199: 571–608, 1964.

    Google Scholar 

  78. Seski JC, Schmid WA: Growth patterns of microinvasive carcinoma of the cervix. In: Hafez ESE, Smith JP (eds) Carcinoma of the cervix. Martinus Nijhoff. The Hague, 1982, pp 45–56.

    Google Scholar 

  79. Christopherson WM, Parker JE: Microinvasive carcinoma of the uterine cervix. Cancer Res 17: 1123–1131, 1964.

    Google Scholar 

  80. Sträuli P, Roeder C: The V2 carcinoma of the rabbit as a model for tumor invasion: I. Introduction. In: Tumour Progression and Markers. Proc Sixth Meeting of the Europ Assoc Cancer Res, Budapest, 1981. Kugler Publications, Amsterdam, 1982, pp 37–41.

    Google Scholar 

  81. Sträuli P, In-Albon A, Haemmerli G: Morphological studies on V2 carcinoma invasion and tumor-associated connective tissue changes in the rabbit mesentery. Cancer Res 43: 5403–5410, 1983.

    Google Scholar 

  82. Elder DE, Ainsworth AM, Clark WHJr: The surgical pathology of cutaneous malignant melanoma. In: Clark WH, Goldman LI, Mastrangelo MJ (eds) Human Malignant Melanoma. Grune & Stratton, New York, San Francisco, London, 1979.

    Google Scholar 

  83. Easty GC, Easty DM: In vivo and in vitro models of invasion. In: Mareel M, Calman KC (eds) Invasion: Experimental and clinical implication. Oxford University Press, Oxford, 1984, in press.

    Google Scholar 

  84. Leighton J, Dreyer DA, Mahoney MJ: Transplantation and malignancy in a companion-host system on the chorioallantoic membrane. Science 132: 1763–1765, 1960.

    Google Scholar 

  85. Leighton J: Invasion and metastasis of heterologous tumours in the chick embryo. Progr Exper Tumor Res 4: 98–125, 1964.

    Google Scholar 

  86. Leighton J: Invasive growth and metastasis in tissue culture systems. In: Methods in cancer research 4: 85–124, 1967.

  87. Scher CD, Haudenschild C, Klagsbrun M: The chick chorioallantoic membrane as a model system for the study of tissue invasion by viral transformed cells. Cell 8: 373–382, 1976.

    Google Scholar 

  88. Easty DM, Easty GC, Carter RL, Monaghan P, Butler LJ: Ten human carcinoma cell lines derived from squamous carcinomas of the head and neck. Brit J Cancer 43: 772–785, 1981.

    Google Scholar 

  89. Easty DM, Easty GD: Measurement of the ability of cells to infiltrate normal tissues in vitro. Brit J Cancer 29: 36–49, 1974.

    Google Scholar 

  90. Nicolson GL, Birdwell CR, Brunson KW, Robbins JC, Beattie G, Fidler IJ: Cell interactions in the metastatic process: Some cell surface properties associated with successful blood-borne tumor spread. In: Lash JW, Burger MM (eds) Cell and tissue interactions. Raven Press, New York, 1977, pp 225–241.

    Google Scholar 

  91. Hart IR, Fidler IJ: An in vitro quantitative assay for tumor cell invasion. Cancer Res 38: 3218–3224, 1978.

    Google Scholar 

  92. Gershman H, Drumm J: Mobility of normal and virus-transformed cells in cellular aggregates. J Cell Biol 67: 419–435, 1975.

    Google Scholar 

  93. De Ridder L, Mareel M, Vakaet L: Invasion of malignant cells into cultured embryonic substrates. Arch Geschwulstforsch 47: 7–27, 1977.

    Google Scholar 

  94. Mareel M, Kint J, Meyvisch C: Methods of study of the invasion of malignant C3H-mouse fibroblasts into embryonic chick heart in vitro. Virchow's Arch B Cell Path 30: 95–111, 1979.

    Google Scholar 

  95. Mareel MM, Bruyneel E, Storme G: Attachment of mouse fibrosarcoma cells to precultured fragments of embryonic chick heart. An early step of invasion in vitro. Virchow's Arch B Cell Path 34: 85–97, 1980.

    Google Scholar 

  96. Mareel MM, De Bruyne GK, Van Desande F, Dragonetti C: Immunohistochemical study of embryonic chick heart invaded by malignant cells in three-dimensional culture. Invas Metast 1: 195–204, 1981.

    Google Scholar 

  97. De Ridder LI, Laerum OD: Invasion of rat neurogenic cell lines in embryonic chick heart fragments in vitro. J Natl Cancer Inst 66: 723–728, 1981.

    Google Scholar 

  98. Pourreau-Schneider N, Felix H, Haemmerli G, Sträuli P: The role of cellular locomotion in leukemic infiltration. An organ culture study on penetration of L5222 rat leukemia cells into the chick embryo mesonephros. Virchow's Arch (Cell Pathol) 23: 257–264, 1977.

    Google Scholar 

  99. Van Peteghem M-C, Mareel MM: Interaction of malignant MO4 cells with chick hypoblast in culture. Virchow's Arch (Cell Pathol) 40: 217–230, 1982.

    Google Scholar 

  100. Van Peteghem M-C, Bellairs R, Mareel MM: Interaction of three human malignant cell lines with chick hypoblast in culture. Virchow's Arch (Cell Pathol) 43: 199–212, 1983.

    Google Scholar 

  101. Tickle C, Crawley H, Goodman M: Cell movement and the mechanism of invasiveness: A survey of the behaviour of some normal and malignant cells implanted into the developing chick wing bud. J Cell Sci 31: 293–322, 1978.

    Google Scholar 

  102. Maignan MF: Étude ultrastructurale des interactions entre des cellules normales ou malignes et le sac vitelline de rat, explanté in vitro. Biol Cell 35: 229–232, 1979.

    Google Scholar 

  103. Sträuli P, Maignan M-F: Lymphocytes, but not cancer cells are able to penetrate into the rat embryo yolk sac wall. Experientia 35: 1582–1583, 1979.

    Google Scholar 

  104. Schleich A, Tchao R, Frick M, Mayer A: Interaction of human carcinoma cells with an epithelial layer and the underlying basement membrane. A new model. Arch Geschwulstforsch 51: 40–44, 1981.

    Google Scholar 

  105. Felix H, Tchao R, Schleich A, Hoffmann V: Interactions of tumor cells with human amnion membrane: A model for studying tumor invasion in vitro. SEM 1982, pp 741–749.

  106. Dingemans KP: Invasion of liver tissue by blood-borne mammary carcinoma cells. J Natl Cancer Inst 53: 1813–1824, 1974.

    Google Scholar 

  107. Roos E, Dingemans KP, Van de Pavert IV, Van den Bergh-Weerman MA: Mammary carcinoma cells in mouse liver: Infiltration of liver tissue and interaction with Kupffer cells. Brit J Cancer 38: 88–99, 1978.

    Google Scholar 

  108. Roos E, Dingemans KP: Infiltration of metastasizing tumor cells into liver and lungs. In: Schweiger HG (ed) International cell biology. Springer, Berlin, Heidelberg, New York, 1981, pp 779–787.

    Google Scholar 

  109. Sugar J: An electron microscopic study of early invasive growth in human skin tumours and laryngeal carcinoma. Europ J Cancer 4: 33–38, 1968.

    Google Scholar 

  110. Frithjof L: Cytoplasmic processes in normal and in malignant oral epithelium. Acta Otolaryng 74: 212–229, 1972.

    Google Scholar 

  111. Schenk P: Microfilaments in human epithelial cancer cells. Z Krebsforsch 84: 241–256, 1974.

    Google Scholar 

  112. Malech HL, Lentz TL: Microfilaments in epidermal cancer cells. J Cell Biol 60: 473–482, 1974.

    Google Scholar 

  113. Hard GC, Toh H: Immunofluorescent characterization of rat kidney tumors according to the distribution of actin as revealed by specific antibody staining. Cancer Res 37: 1618–1623, 1977.

    Google Scholar 

  114. McNutt NS: Ultrastructural comparison of the interface between epithelium and stroma in basal cell carcinoma and control human skin. Lab Invest 35: 132–142, 1976.

    Google Scholar 

  115. Gabbiani G, Csank-Brassert J, Schneeberger J-C, Kapanci Y, Trenchev P, Holborow EJ: Contractile proteins in human cancer cells. Am J Pathol 83: 457–474, 1976.

    Google Scholar 

  116. Rungger-Brändle E, Gabbiani G: Human epidermal and mammary carcinoma cells: Actin distribution. Europ J Cancer 16: 12–13, 1980.

    Google Scholar 

  117. Raz A, Geiger B: Altered organization of cell-substrate contacts and membrane-associated cytoskeleton in tumor cell variants exhibiting different metastatic capabilities. Cancer Res 42: 5183–5190, 1982.

    Google Scholar 

  118. Bannasch P, Zerban H, Schmid E, Franke WW: Characterization of cytoskeletal components in epithelial and mesenchymal liver tumors by electron and immuno-fluorescence microscopy. Virchow's Arch (Cell Pathol) 16: 139–158, 1981.

    Google Scholar 

  119. Low BB, Chaponnier C, Gabbiani G: Organization of actin in epithelial cells during regenerative and neoplastic conditions. Correlation of morphologic, immunofluorescent, and biochemical findings. Lab Invest 44: 359–367, 1981.

    Google Scholar 

  120. Isenberg G, Rathke PC, Hülsmann N, Franke NW, Wohlfahrt-Bottermann KE: Cytoplasmic actomyosin fibrils in tissue culture cells. Direct proof of contractility by visualisation of ATP-induced contraction in fibril isolated by laser microbeam dissector. Cell Tiss Res 166: 427–433, 1976.

    Google Scholar 

  121. Kreis TE, Birchmeier W: Stress fiber sarcomers of fibroblasts are contractile. Cell 22: 555–561, 1980.

    Google Scholar 

  122. Gustafson T: The role and activities of pseudopodia during morphogenesis of the sea urching larva. In: Allen RD, Kamiya N (eds) Primitive motile systems in cell biology. Academic Press, New York, 1964, pp 333–349.

    Google Scholar 

  123. Ambrose EJ, Easty DM: Time lapse filming of cellular interactions in organ culture. I. Behaviour of non-malignant cells. Differentiation 1: 39–50, 1973.

    Google Scholar 

  124. Ambrose EJ, Easty DM: Time lapse filming of cellular interactions in organ culture. II Behaviour of malignant cells. Differentiation 1: 227–284, 1973.

    Google Scholar 

  125. Schenk P, Konrad K: Zur Ultrastruktur der Tumor-Stroma-Grenze des invasiven Larynxcarcinoms. Laryng Rhinol 58: 575–582, 1979.

    Google Scholar 

  126. Tarin D: Sequential electron microscopical study of experimental mouse skin carcinogenesis. Int J Cancer 2: 195–211, 1967.

    Google Scholar 

  127. Liotta LA, Rao CN, Barsky SH: Tumor invasion and the extracellular matrix. Lab Invest 49: 636–649, 1983.

    Google Scholar 

  128. Wood SJr: Pathogenesis of metastasis formation observed in vivo in the rabbit ear chamber. Arch Path 66: 550–568, 1958.

    Google Scholar 

  129. Wood SJr: Cinemicroscopy of living tissues in research and teaching. Insertion and use of a rabbit ear chamber for time-lapse and standard cinephotomicroscopy in the living animal. J Soc Motion Picture TV Engineery 74: 737–740, 1965.

    Google Scholar 

  130. Wood S, Lewis R, Mulholland JH, Knaack J: Assembly, insertion and use of a modified rabbit ear chamber. John Hopkins Hosp Bull 119: 1–15, 1966.

    Google Scholar 

  131. Wood S, Baker RR, Marzocchi B: Factors influencing the spread of cancer: locomotion of normal and malignant cells in vivo. In: Wissler RW, Dao TL, Wood S (eds) Endogenous factors influencing host-tumor balance. The University of Chicago Press, 1967, pp 223–237.

  132. Wood SJr, Baker RR, Marzocchi B: In vivo studies of tumor behavior: Locomotion of and interrelationships between normall cells and cancer cells. In: The profileration and spread of neoplastic cells. Baltimore Md. The Williams and Wilkins Co, 1968, pp 495–510.

    Google Scholar 

  133. Wood S Jr: Mechanism of establishment of tumor metastases. In: Ioachim HL (ed) Pathobiol Ann, 1971, pp 281–308.

  134. Wood S, Baker RR, Marzocchi B: Locomotion of cancer cells in vivo compared with normal cells (time-lapse cinematography). Motion picture film 16 mm. Kalamazoo, Upjohn Co, 1967.

    Google Scholar 

  135. Thornes RD, Edlow DW, Wood S: Inhibition of locomotion of cancer cells in vivo by anticoagulant therapy. I. Effects of sodium warfarin on V2 cancer cells, granulocytes, lymphocytes and macrophages in rabbits. Johns Hopkins Med J 123: 305–316, 1968.

    Google Scholar 

  136. Zeidman I: The fate of circulating tumor cells. I. Passage of cells through capillaries. Cancer Res 21: 38–39, 1961.

    Google Scholar 

  137. Johnson HJ, Wood S: An in vivo study of fibrinolytic agents on V2 carcinoma cells and intravascular thrombi in rabbits. Bull Johns Hopkins Hosp 113: 335–346, 1963.

    Google Scholar 

  138. Sato H, Suzuki M: Experimental studies on metastasis formation with special reference to the mechanism of cancer cell lodgement in the microcirculation. In: Exc Med Intern Congress Series No 269 Atherogenesis-II, 1972, pp 168–176.

  139. Haemmerli G, Sträuli P: Motility of L5222 cells within the mesentery. Virchow's Arch B Cell Path 29: 167–177, 1978.

    Google Scholar 

  140. Sträuli P, Haemmerli G, Tschenett C, Krstić RV: Different modes of mesenteric infiltration displayed by two rat leukemias. A study by scanning and transmission electronmicroscopy and by microcinematography. Virchow's Arch Cell Path 35: 93–108, 1981.

    Google Scholar 

  141. Haemmerli G, Arnold B, Sträuli P: Cell locomotion, a contributing factor in spread of the rabbit V2 carcinoma. Int J Cancer 29: 223–227, 1982.

    Google Scholar 

  142. Carrel S, Sordat B, Merenda C: Establishment of a cell line (Co-115) from a human colon carcinoma transplanted into nude mice. Cancer Res 36: 3978–3984, 1976.

    Google Scholar 

  143. Willis RA: The spread of tumours in the human body. Butterworths, London, 1973, 3rd edn.

    Google Scholar 

  144. Albrecht-Buehler G: Group locomotion of PtK1 cells. Exp Cell Res 122: 402–407, 1979.

    Google Scholar 

  145. Haemmerli G, Sträuli P: Patterns of motility in human leukemias: A study by time lapse cinematography. Leukemia Res 2: 71–85, 1978.

    Google Scholar 

  146. Fischer-Wasels B: Allgemeine Geschwulstlehre. In: Bethe A, Bergmann G, Embden G, Ellinger A (eds) Handbuch der normalen und pathologischen Physiologie, Bd 14. Julius Springer, Berlin, 1927, pp 1341–1790.

    Google Scholar 

  147. Foulds L: Neoplastic development. Academic Press, London, New York, 1969.

    Google Scholar 

  148. Fidler IJ: Selection of successive tumour lines for metastasis. Nature (Lond) 242: 148–149, 1973.

    Google Scholar 

  149. Fidler IJ, Kripke ML: Metastasis results from preexisting variant cells within a malignant tumor. Science 197: 893–895, 1977.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sträuli, P., Haemmerli, G. The role of cancer cell motility in invasion. Cancer Metast Rev 3, 127–141 (1984). https://doi.org/10.1007/BF00047660

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00047660

Keywords

Navigation