Skip to main content
Log in

Tribological behavior of polycrystalline and single-crystal silicon

  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

SEM tribometric experiments were performed with polycrystalline silicon (poly-Si) vs. poly-Si and Si(111) vs. Si(111) interfaces in moderate vacuum to 850°C, complementing similar recent experiments on Si(100) vs. Si(100). All friction data agree with a hypothesis associating the wear- and thermal desorption-induced generation and cooling-induced adsorptive passivation of dangling bonds on the sliding surfaces with high and low adhesion and friction, respectively. Strong additional evidence is given for a surface re- and deconstruction-induced, temporary reduction in high temperature friction. The wear rate of the various Si vs. Si specimens (on the order of 10-12 m3 /(N m)) specific to the wide temperature range vacuum test regimen is about 104 times higher than that of unpolished PCD films sliding against themselves under multi-GPa unit loads and similar environmental conditions. In contrast, the characteristic load-carrying capacity of the high-wearing Si, regardless of its crystal structure, was found to be only ∼ 1 MPa. The wear mechanism of the various Si crystallinities was heavily influenced by the agglomeration and plowing of the wear debris particles trapped in the contact zone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.T. Howe, R.S. Muller, K.J. Gabriel and W.S.N. Trimmer, IEEE Spectrum 27 (7) (1990) 29.

    Google Scholar 

  2. M. Mehregany, S.D. Senturia and J.H. Lang, in: Tech. Digest, IEEE Solid State Sensor and Actuator Workshop, Hilton Head, NC, 1990.

  3. Y.-C. Tai and R.S. Muller, Sensors and Actuators A21–A23(1990) 180.

    Google Scholar 

  4. K.J. Gabriel, F. Behi, R. Mahadevan and M. Mehregany, Sensors and Actuators, A21–A23 (1990) 184.

    Google Scholar 

  5. M.G. Lim, J.C. Chang, D.P. Schultz, R.T. Howe and R.M. White, in: Proc. IEEE MEMS '90 Conf., Napa Valley, CA, p. 82.

  6. M. Mehregany, S.M. Phillips, E.T. Hsu and J.H. Lang, in: Tech. Digest, 67th Int. Conf. Solid State Sensors and Actuators, Transducers '91 (IEEE), p. 59.

  7. K. Deng, W.H. Ko and G.M. Michal, in: Tech. Digest, 67th Int. Conf. Solid State Sensors and Actuators, Transducers '91 (IEEE), p. 213.

  8. M. Mehregany and S.D. Senturia, IEEE Trans. on Electron Devices 39 (5) (1992) 1136.

    Google Scholar 

  9. A.P. Lee, A.P. Pisano and M.G. Lim, MRS Symp. Proc. Vol. 276 (1992) 67.

    Google Scholar 

  10. K. Deng and W.H. Ko, Sensors and Actuators A 35 (1992) 45.

    Google Scholar 

  11. B.K. Gupta, J. Chevallier and B. Bhushan, Trans. ASME, J. Tribol. 115 (1993) 392.

    Google Scholar 

  12. S. Venkatesan and B. Bhushan, Wear 171 (1994) 25.

    Google Scholar 

  13. E. Zanoria and S. Danyluk, Wear 162–164 (1993) 332.

    Google Scholar 

  14. E.S. Zanoria, S. Danyluk and M.J. McNallan, Tribol. Trans. 38 (1995) 721.

    Google Scholar 

  15. D.-S. Lim and S. Danyluk, J. Mater. Sci. 23 (1988) 2607.

    Google Scholar 

  16. S. Danyluk, S.-W. Lee and L.D. Dyer, Ceram. Bull. 69 (1990) 1712.

    Google Scholar 

  17. M.N. Gardos, Tribol. Lett. 2 (1996) 173.

    Google Scholar 

  18. M.N. Gardos, in: Protective Coatings and Thin Films, Proc. NATO Adv. Res. Workshop, May 30–June 5, 1996, NATO ARW Series (Kluwer Academic, Dordrecht), in print.

    Google Scholar 

  19. K. Miyoshi, R.L.C. Wu and A. Garscadden, J. Appl. Phys. 74 (1993) 4446.

    Google Scholar 

  20. K. Miyoshi, NASA TM-106759, NASA Lewis Res. Center, Cleveland, OH, 1995.

    Google Scholar 

  21. S. Chandrasekar and B. Bhushan, Wear 153 (1992) 79.

    Google Scholar 

  22. Z. Feng, Y. Tzeng and J.E. Field, J. Phys. D 25 (1992) 1418.

    Google Scholar 

  23. M.T. Dugger, D.E. Peebles and L.E. Pope, in: Surface Science Investigations in Tribology: Experimental Approaches, eds. Y.-W. Chang, A.M. Homola and G.B. Street, ACS Symp. Ser. No. 485 (ACS Books, Washington, 1992) p. 72.

    Google Scholar 

  24. M.N. Gardos and B.L. Soriano, J. Mater. Res. 5 (1990) 2599.

    Google Scholar 

  25. M.N. Gardos, in: Synthetic Diamond: Emerging CVD Science and Technology, Electrochem. Soc. Monograph, eds. K.E. Spear and J.P. Dismukes (Wiley, New York, 1994) ch. 12, p. 419.

    Google Scholar 

  26. M.N. Gardos and K.V. Ravi, in: 4th Int. Symp. on Diamond Materials, The Electrochem Soc. Proc., Vol. 95–4 (1995) 415.

  27. M.N. Gardos and K.V. Ravi, Dia. Films & Technol. 4 (1994) 139.

    Google Scholar 

  28. B.R. Lawn and D.B. Marshall, J. Res. NBS 89 (1984) 435.

    Google Scholar 

  29. K. Miyoshi and D.H. Buckley, ASLE Trans. 28 (1985) 296.

    Google Scholar 

  30. Y. Zhang, F. Zhang and G. Chen, J. Appl. Phys. 76 (1994) 7805.

    Google Scholar 

  31. D.J. Eaglesham, A.E. White, L.C. Feldman, N. Moriya and D.C. Jacobson, Phys. Rev. Lett. 70 (1993) 1643.

    Google Scholar 

  32. J.E. Field, The Properties of Diamond (Academic Press, London, 1979).

    Google Scholar 

  33. D.M. Follstaedt, Appl. Phys. Lett. 62 (1993) 1116.

    Google Scholar 

  34. P.J. Heshket, C. Ju, S. Gowda, E. Zanoria and S. Danyluk, J. Electrochem. Soc. 140 (1993) 1080.

    Google Scholar 

  35. W.D. Harkins, J. Chem. Phys. 10 (1942) 268.

    Google Scholar 

  36. S.J. Lin, S.L. Lee, J. Hwang, C.S. Chang and H.Y. Wen, Appl. Phys. Lett. 60 (1992) 1559.

    Google Scholar 

  37. P.W. Pellegrini, C.E. Ludington and M.M. Weeks, J. Appl. Phys. 67 (1990) 1417.

    Google Scholar 

  38. B.G. Demczyk, R. Naik, G. Auner, C. Kota and U. Rao, J. Appl. Phys. 75 (1994) 1956.

    Google Scholar 

  39. T. Sakka, K. Toyoda and M. Iwasaki, Appl. Phys. Lett. 55 (1989) 1068.

    Google Scholar 

  40. C.M. Greenlief and M. Liehr, Appl. Phys. Lett. 64 (1994) 601.

    Google Scholar 

  41. M.T. Schulberg, C.A. Fox, G.D. Kubiak and R.H. Stulen, J. Appl. Phys. 77 (1995) 3484.

    Google Scholar 

  42. B. Bhushan and S. Venkatesan, in: Adv. Info. Storage Syst., Vol. 5 (1993), ASME, p. 211.

  43. B. Bhushan and V.N. Koinkar, J. Appl. Phys. 75 (1994) 5741.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gardos, M.N. Tribological behavior of polycrystalline and single-crystal silicon. Tribol Lett 2, 355–373 (1996). https://doi.org/10.1007/BF00156908

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00156908

Keywords

Navigation