Skip to main content
Log in

The challenges of the models of solar flares

  • Published:
Geomagnetism and Aeronomy Aims and scope Submit manuscript

Abstract

The challenges of ‘standard’ model of solar flares motivated by new observations with the spacecrafts and ground-based telescopes are presented. The most important problems are in situ heating of photospheric and chromospheric loop footpoints up to the coronal temperatures without precipitating particle beams accelerated in the corona, and the sunquakes which are unlikely to be explained by the impact of highenergy particles producing hard X-ray emission. There is also the long-standing ‘number problem’ in the physics of solar flares. It is shown that modern observations favored an important role of the electric currents in the energy release processes in the low solar atmosphere. Particle acceleration mechanism in the electric fields driven by the magnetic Rayleigh-Taylor instability in the chromosphere is proposed. The electric current value I ≥ 1010 A, needed for the excitation of super-Dreicer electric fields in the chromosphere is determined. It is shown that both Joule dissipation of the electric currents and the particles accelerated in the chromosphere can be responsible for in situ heating of the low solar atmosphere. Alternative model of the solar flare based on the analogy between the flaring loop and an equivalent electric circuit which is good tool for the electric current diagnostics is presented. Interaction of a current-carrying loop with the partially-ionized plasma of prominence in the context of particle acceleration is considered. The role of plasma radiation mechanism in the sub-THz emission from the chromosphere is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alfvén, H., Cosmic Plasma, Dordrecht: D. Reidel, 1981.

    Book  Google Scholar 

  • Alfvén, H. and Carlqvist, P., Currents in the solar atmosphere and a theory of solar flares, Sol. Phys., 1967, vol. 1, no. 2, pp. 220–228.

    Article  Google Scholar 

  • Ashwanden, M., Physics of the Solar Corona. An Introduction with Problem and Solutions, Berlin: Springer, 2005.

    Google Scholar 

  • Avrett, H. and Loeser, R., Models of the solar chromosphere and transition region from SUMER and HRTS observations: Formation of the extreme-ultraviolet spectrum of hydrogen, carbon, and oxygen, Astrophys. J. Suppl. Ser., 2008, vol. 175, pp. 229–276.

    Article  Google Scholar 

  • Brown, J.C., The temperature structure of chromospheric flares heated by non-thermal electrons, Sol. Phys., 1973, vol. 31, pp. 143–169

    Article  Google Scholar 

  • Cowling, T.G., Magnetohydrodynamics, London: Wiley, 1957.

    Google Scholar 

  • Emslie, A.G. and Hénoux, J.-C., The electrical current structure associated with solar flare electrons accelerated by large-scale electric fields, Astrophys. J., 1995, vol. 446, pp. 371–376.

    Article  Google Scholar 

  • Fleishman, G.D. and Kontar, E.P., Sub-THz radiation mechanisms in solar flares, Astrophys. J. Lett., 2010, vol. 709, no. 2, pp. L127–L132.

    Article  Google Scholar 

  • Fletcher, L., Hannah, I.G., Hudson, H.S., and Metcalf, T.R., A TRACE white light and RHESSI hard X-ray study of flare energetics, Astrophys. J., 2007, vol. 656, pp. 1187–1196.

    Article  Google Scholar 

  • Fritzová-Švestková, L. and Švestka, Z., Electron density in flares, II: Results of measurement, Sol. Phys., 1967, vol. 2, pp. 87–97.

    Article  Google Scholar 

  • Giovanelli, R.G., A theory of chromospheric flares, Nature, 1946, vol. 158, pp. 81–82.

    Article  Google Scholar 

  • Gu, Y., Jefferies, J.T., Lindsey, C., and Avrett, E.H., A stochastic model of the solar atmosphere, Astrophys. J., 2009, vol. 484, pp. 960–978.

    Article  Google Scholar 

  • Hénoux, J.C., Dynamo theories of solar flares, in Solar Maximum Analysis: Proceedings of International Workshop held in Irkutsk, USSR, June 17–24, 1985, Stepanov, V.E. and Obridko, V.N., Eds., Utrecht, The Netherlands: VNU Science, 1987, pp. 109–122.

  • Hénoux, J.-C. and Somov, B.V., The photospheric dynamo. 1. Magnetic flux-tube generation, Astron. Astrophys., 1991, vol. 241, pp. 613–617.

    Google Scholar 

  • Heyvaerts, J., Coronal electric currents produced by photospheric motions, Sol. Phys., 1974, vol. 38, pp. 419–427.

    Article  Google Scholar 

  • Hoyng, P., van Beek, H.F., and Brown, J.C., High time resolution analysis of solar hard X-ray flares observed on board the ESRO TD-1A satellite, Sol. Phys., 1976, vol. 48, pp. 197–254.

    Article  Google Scholar 

  • Hudson, H. and Fletcher, L., Flares and the chromosphere, Earth Planets Space, 2009, vol. 61, pp. 577–580.

    Article  Google Scholar 

  • Ionson, J., Resonant electrodynamic heating of stellar coronal loops—an LRC circuit analog, Astrophys. J., 1982, vol. 254, pp. 318–334.

    Article  Google Scholar 

  • Ji, H., Cao, W., and Goode, P.R., Observation of ultrafine channels of solar corona heating, Astrophys. J. Lett., 2012, vol. 750, pp. L25–L29.

    Article  Google Scholar 

  • Kan, J.R., Akasofu, S.-I., and Lee, L.C., A dynamo theory of solar flares, Sol. Phys., 1983, vol. 84, pp. 153–167.

    Article  Google Scholar 

  • Kane, S.R., Hurley, K., McTiernan, J.M., Sommer, M., Boer, M., and Niel, M., Energy release and dissipation during giant solar flares, Astrophys. J. Lett., 1995, vol. 446, pp. L47–L50.

    Article  Google Scholar 

  • Kaufmann, P., Raulin, J-P., de Castro, C.G.G., Levato, H., Gary, D.E., et al., A new solar burst spectral component emitting only in the terahertz range, Astrophys. J. Lett., 2004, vol. 603, no. 2, pp. L121–L124.

    Article  Google Scholar 

  • Kaufmann, P., de Castro, C.G.G., Correia, E., Costa, J.E.R., Raulin, J.-P., and Valio, A.S., Rapid pulsations in sub- THz solar bursts, Astrophys. J., 2009, vol. 697, no. 1, pp. 420–427.

    Article  Google Scholar 

  • Khodachenko, M.L. and Zaitsev, V.V., Formation of intensive magnetic flux tubes in a converging flow of partially ionized solar photospheric plasma, Astrophys. Space Sci., 2002, vol. 279, no. 4, pp. 389–410.

    Article  Google Scholar 

  • Khodachenko, M.L., Zaitsev, V.V., Kislyakov, A.G., and Stepanov, A.V., Equivalent electric circuit models of coronal magnetic loops and related oscillatory phenomena on the Sun, Space Sci. Rev., 2009, vol. 143, nos. 1–4, pp. 83–117.

    Article  Google Scholar 

  • Knoepfel, H. and Spong, D.A., Runaway electrons in toroidal discharges, Nucl. Fusion, 1979, vol. 19, pp. 785–825.

    Article  Google Scholar 

  • Kosovichev, A.G., Sunquakes: Helioseismic response to solar flares, 2014. https://arxiv.org/abs/1402.1249.

    Google Scholar 

  • Kostyk, R.I., Peculiarities of convective motions in the upper solar atmosphere. I. Kinematics and Physics of Celestial Bodies, 2010, vol. 26, no. 5, pp. 233–241.

    Article  Google Scholar 

  • Krasnoselskikh, V., Vekstein, G., Hudson, H., Bale, S., and Abbett, W., Generation of electric currents in the chromosphere via neutral-ion drag, Astrophys. J., 2010, vol. 724, pp. 1542–1550.

    Article  Google Scholar 

  • Kruskal, M. and Schwarzschild, M., Some instabilities of a completely ionized plasma, Proc. R. Soc. London, 1954, vol. A223, pp. 348–360.

    Article  Google Scholar 

  • Melrose, D.B. and McClymont, A.N., The resistances of the photosphere and of a flaring coronal loop, Sol. Phys., 1987, vol. 113, nos. 1–2, pp. 241–246.

    Google Scholar 

  • Ni, L.; Yang, Z.; and Wang, H., Fast magnetic reconnection with Cowling’s conductivity, Astrophys. Space Sci., 2007, vol. 312, nos. 3–4, pp. 139–144.

    Article  Google Scholar 

  • Peres, G., Serio, S., Vaiana, G.S., and Rosner, R., Coronal closed structures. IV. Hydrodynamical stability and response to heating perturbations, Astrophys. J., 1982, vol. 252, pp. 791–799.

    Article  Google Scholar 

  • Priest, E.R., Solar Magnetohydrodynamics, Dordrecht: Reidel, 1982.

    Book  Google Scholar 

  • Priest, E.R. and Forbes, T., Magnetic Reconnection. MHD Theory and Applications, Cambridge University Press, 2000.

    Book  Google Scholar 

  • Pustil’nik, L.A., Instability of quiescent prominences and the origin of solar flares, Sov. Astron., 1973, vol. 17, pp. 763–767.

    Google Scholar 

  • Sakai, J.I., Nagasugi, Y., Saito, S., and Kaufmann, P., Simulating the emission of electromagnetic waves in the terahertz range by relativistic electron beams, Astron. Astrophys., 2006, vol. 457, pp. 313–318.

    Article  Google Scholar 

  • Schlüter, A. and Biermann, L., Interstellare Magnetfelder, Z. Naturforsch., A: Astrophys., Phys. Phys. Chem., 1950, vol. 5a, pp. 237–251.

    Google Scholar 

  • Sen, N.K. and White, M.L., A physical mechanism for the production of solar flares, Sol. Phys., 1972, vol. 23, pp. 146–154.

    Article  Google Scholar 

  • Severny, A.B., Solar magnetic fields, Space Sci. Rev., 1964, vol. 3, no. 4, pp. 451–486.

    Article  Google Scholar 

  • Sharykin, I.N. and Kosovichev, A.G., Dynamics of electric currents, magnetic field topology, and helioseismic response of a solar flare, Astrophys. J., 2015, vol. 808, no. 1, id 72.

    Google Scholar 

  • Sharykin, I.N., Kosovichev, A.G., and Zimovets, I.V., Energy release and initiation of sunquake in C-class flare, Astrophys. J., 2015, vol. 807, no. 1, id 102.

    Google Scholar 

  • Sharykin, I.N., Sadykov, V.M., Kosovichev, A.G., Vargas-Dominguez, S., and Zimovets, I.V., Observational investigation of energy release in the lower solar atmosphere of a solar flare, 2016. https://arxiv.org/abs/1604.05380.

    Google Scholar 

  • Silva, A.V.R., Share, G.H., Murphy, R.J., Costa, J.E.R., de Castro, C.G.G., et al., Evidence that synchrotron emission from nonthermal electrons produces the increasing submillimeter spectral component in solar flares, Sol. Phys., 2007, vol. 245, pp. 311–326.

    Article  Google Scholar 

  • Smith, S.F. and Ramsey, H.E., The flare-associated filament disappearance, Z. Astrophys., 1964, vol. 60, pp. 1–18.

    Google Scholar 

  • Spicer, D.S., An unstable arch model of a solar flare, Sol. Phys., 1977, vol. 53, pp. 305–345.

    Article  Google Scholar 

  • Stepanov, A.V., Zaitsev, V.V., and Nakariakov, V.M., Coronal Seismology: Waves and Oscillations in Stellar Coronae, Wiley, 2012.

    Book  Google Scholar 

  • Švestka, Z. and Fritzova-Švestková, L., Electron density in flares, I: Discussion of the halfwidth method, Sol. Phys., 1967, vol. 2, pp. 75–86.

    Article  Google Scholar 

  • Trottet, G., Krucker, S., Lüthi, T., and Magun, A., Radio submillimeter and gamma-ray observations of the 2003 October 28 solar flare, Astrophys. J., vol. 678, no. 1, pp. 509–514.

  • Tsap, Yu.T., Stepanov, A.V., and Kopylova, Yu.G., Ambipolar diffusion and magnetic reconnection, Astron. Rep., 2012, vol. 56, no. 2, pp. 138–145.

    Article  Google Scholar 

  • Wedemeyer, S., Bastian, T., Brajsa, R.;., Hudson, H., Fleishman, G., et al., Solar science with the Atacama large millimeter/submillimeter array—A new view of our Sun, Space Sci. Rev., 2016, vol. 200, nos. 1–4, pp. 1–73.

    Article  Google Scholar 

  • Wheatland, M.S. and Melrose, D.B., Energy release in a prominence-loaded flaring loop, Sol. Phys., 1995, vol. 159, pp. 137–141.

    Article  Google Scholar 

  • Zaitsev, V.V. and Stepanov, A.V., The plasma radiation of flare kernels, Sol. Phys., 1983, vol. 88, pp. 197–313.

    Article  Google Scholar 

  • Zaitsev, V.V. and Stepanov, A.V., Towards the circuit model of solar flares, Sol. Phys., 1992, vol. 139, pp. 343–356.

    Article  Google Scholar 

  • Zaitsev, V.V., Urpo, S., and Stepanov, A.V., Temporal dynamics of Joule heating and DC-electric field acceleration in single flare loop, Astron. Astrophys., 2000, vol. 357, pp. 1105–1114.

    Google Scholar 

  • Zaitsev, V.V., Electron acceleration by electric fields near the footpoints of current-carrying coronal magnetic loops, Astron. Lett., 2005, vol. 31, no. 9, pp. 620–626.

    Article  Google Scholar 

  • Zaitsev, V.V. and Stepanov, A.V., Reviews of topical problems: Coronal magnetic loops, Phys-Usp., 2008, vol. 51, no. 11, pp. 1123–1160.

    Article  Google Scholar 

  • Zaitsev, V.V., Stepanov, A.V., and Melnikov, V.F., Sub-terahertz emission from solar flares: The plasma mechanism of chromospheric emission, Astron. Lett., 2013, vol. 39, no. 9, pp. 650–659.

    Article  Google Scholar 

  • Zaitsev, V.V., Stepanov, A.V., and Kaufmann, P., On the origin of pulsations of sub-THz emission from solar flares, Sol. Phys., 2014, vol. 289, pp. 3017–3032.

    Article  Google Scholar 

  • Zaitsev, V.V. and Stepanov, A.V., Particle acceleration and plasma heating in the chromosphere, Sol. Phys., 2015, vol. 290.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Stepanov.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stepanov, A.V., Zaitsev, V.V. The challenges of the models of solar flares. Geomagn. Aeron. 56, 952–971 (2016). https://doi.org/10.1134/S001679321608020X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S001679321608020X

Navigation