Skip to main content
Log in

Autonomic pathways in the orbit of the human fetus and the rhesus monkey

  • Published:
Documenta Ophthalmologica Aims and scope Submit manuscript

Abstract

In order to study the three-dimensional topography of the intra-orbital autonomic nerve plexuses and the input for these systems, human fetuses and adult rhesus monkeys were investigated. Specimens of the orbits were processed according to the histochemical acetylcholinesterase methods for staining of peripheral nerves. The nerve fibers enter the orbit along the following pathways: 1. bundles of nerve fibers from the pterygopalatine ganglion (mainly parasympathetic) by penetrating the orbital muscle (Müller); 2. perivascularly along the ophthalmic artery (sympathetic). In the orbit the nerve fibers intermingle. The pathways of the nerve fibers from this interwoven nerve plexus towards the target organs are: 1. perivascularly along branches of the ophthalmic artery; 2. perineurally along and in the branches of the ophthalmic and maxillary nerves; 3. independently of blood vessels and cranial nerve branches in Tenon's capsule. Moreover, bundles of nerve fibers from the ciliary ganglion contribute to the innervation of extraocular structures, e.g. the eyelids. It can be concluded that, as far as the autonomic innervation of the orbit is concerned, the monkey is a good animal model for neuroanatomical studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ac:

ciliary artery

ao:

opthalmic artery

b:

ulbus oculi

bo:

bony orbit

gc:

cliary ganglion

gl:

lacrimal gland

gp:

pterygopalatine ganglion

mlp:

levator (palpebral) muscle

mo:

orbital muscle (Müller)

moi:

inferior oblique muscle

mos:

superior oblique muscle

mri:

inferior rectus muscle

mrl:

lateral reclus muscle

mrla:

accessory lateral rectus muscle

mrm:

medial rectus muscle

mrs:

superior rectus muscle

mti:

inferior tarsal muscle

mts:

superior tarsal muscle

nll:

optic nerve

nlll:

oculomotor nerve

nl:

lacrimal nerve

nnc:

ciliary nerves

noi:

infraorbital nerve

or:

orbital nerve branch

pal:

eye lid

pnpc:

nerve plexus of the palpebral conjunctiva

pnro:

retro-ocular nerve plexus

sno:

optic nerve sheath

References

  1. Andres KH, Kautzky R. Die Frühentwicklung der vegetatieven Hals- und Kopfganglien des Menschen. Z Anat Entw Gesch 1955; 119: 55–84.

    Google Scholar 

  2. Baijet B, Drukker J. An acetylcholinesterase method for in toto staining of peripheral nerves. Stain Techn 1975; 50: 31–6.

    Google Scholar 

  3. Baijet B, Groen GJ. Some aspects of the peripheral nervous system in the human fetus as revealed by the acetylcholinesterase in toto staining method. Acta Histoch 1986; Suppl 32: 69–75.

    Google Scholar 

  4. Baljet B, Groen GJ, Boekelaar AB, Los JA. Orbital neuroanatomy in the rat. Verh Anat Gesellsch 1987; 81: 389–90.

    Google Scholar 

  5. Baljet B. The autonomic innervation of intraorbital structures. Ann Royal Coll Surg London 1988; 70: 170.

    Google Scholar 

  6. Baljet B, van der Werf F and Boekelaar AB. Threedimensional smooth muscle topography and its autonomic innervation in the primate orbit. Ann Royal Coll Surg London 1988; 70: 182.

    Google Scholar 

  7. Gonnering RS, Dortzbach RK, Erickson KA. The cynomolgus monkey as a model for orbital research. I Normal anatomy. Cur Eye Res 1984; 3: 529–40.

    Google Scholar 

  8. Groen GJ, Baijet B, Boekelaar AB and Drukker J. Connections between the sympathetic trunc and the nerve plexuses of the anterior longitudinal ligament. Acta Anat 1987; 130: 38–9.

    Google Scholar 

  9. Karnowsky MJ, Roots L. A “direct-coloring” thiocholine method for cholinesterase. J Histochem Cytochem 1964; 12: 219–21.

    Google Scholar 

  10. Koornneef L. Sectional anatomy of the orbit. Amsterdam, Aeolus Press, 1981.

    Google Scholar 

  11. Kraus W. Zur Anatomie der glatte Muskeln der menschlichen Augenhöhle nach Untersuchungen an Neugeborenen. I. Die Membrana orbitalis. Arch f Augenh 1912; 71: 277–8.

    Google Scholar 

  12. Kraus W. Zur Anatomie der glatte Muskeln der menschlichen Augenhöhle nach Untersuchungen an Neugeborenen. II. Die Membrana orbitopalpebralis musculosae. Arch f Augenh 1913; 72: 21–44.

    Google Scholar 

  13. Kuwayama Y, Grimes PA, Ponte B, Stone RA. Autonomic neurons supplying the rat eye and the intraorbital distribution of vasoactive intestinal polypeptide (VlP)-like immunoreactivity. Exp Eye Res 1987; 44: 907–22.

    Google Scholar 

  14. Lin T, Grimes A, Stone RA. Nerve pathways between the pterygopalatine and eye in cats. Anat Rec 1988; 222: 95–102.

    Google Scholar 

  15. Mitchell GAG. The autonomic nervous system. Livingstone, London, 1953.

    Google Scholar 

  16. Manson PN, Lazarus RB, Morgan R, Iuff N. Pathways of sympathetic innervation to the superior and inferior (Müller's) tarsal muscles. Plastic Rec Surg 1986; 17: 33–40.

    Google Scholar 

  17. Otto AJ, Baijet B and van der Werf F. Surgical volume corrections in orbital disorders. An experimental study in monkeys. Verh Anat Gesellsch 1989a; 84: (in press).

  18. Otto AJ, Koornneef L, Maurits M, Deen van Leeuwen L and Baljet B. Decompression in “Graves”-ophthalmology. Int Ophth 1989b; (in press)

  19. Ruskell GL. The orbital distribution of the sphenopalatine ganglion in the rabbit. In: The structure of the eye. Vol. II: Eighth International Congress of Anatomists, Wiesbaden. Ed. Rohen JW, Schattauer, Stuttgart 1965; 355–368.

    Google Scholar 

  20. Ruskell GL. The orbital branches of the pterygopalatine ganglion and their relationship with internal carotid nerve branches in primates. J Anat 1970; 106: 323–29.

    Google Scholar 

  21. Ruskell GL. Facial parasympathetic innervation of the choroidal blood vessels in monkeys. Exp Eye Res 1971; 12: 166–172.

    Google Scholar 

  22. Ruskell GL. Innervation of the conjunctiva. Trans Ophthal Soc UK 1985a; 104: 390–5.

    Google Scholar 

  23. Ruskell GL. Facial nerve distribution to the eye. Am J Opt and Phys Opt 1985b; 62: 793–8.

    Google Scholar 

  24. Stone RA. Neuropeptide Y and the innervation of the human eye. Exp Eye Res 1986; 42: 349–55.

    Google Scholar 

  25. Stone RA, McGlinn AM. Calcitonin Gene-Related Peptide immunoreactive nerves in the human and rhesus monkey eyes. Inv Ophth and Vis Sci 1988; 29: 305–10.

    Google Scholar 

  26. ten Tusscher MPM, Klooster J, Baljet B, van der Werf F and Vrensen GFJM. Pre- and post-ganglionic nerve fibers of the pterygopalatine ganglion and the distribution to the eyeball of rats. Brain Res. 1989; (in press).

  27. Uddman R, Alumets J, Ehinger B, Hakanson R, Lorén I and Sundler F. Vasoactive intestinal peptide nerves in ocular and orbital structures of the cat. Inv Ophth Vis Sci 1980; 19: 878–885.

    Google Scholar 

  28. Vermey-Keers C. The orbital muscle and the cavernosus sinus. Proc 3rd Int Symp on Orbital Disorders 1977.

  29. Vitali G. Sui rami orbitali del ganglio sfeno-palatina e sulla presenza di ganglietti nervosi nel loro decorso. Riv Oto-neuro-oftal 1929; 6: 151–161.

    Google Scholar 

  30. van der Werf F and Baljet B. An acetylcholinesterase thick section method for topographical studies of autonomic nerve fibers in fresh deep-frozen specimens. J Histotechnol 1989; 12: 47–53.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baljet, B., van der Werf, F. & Otto, A.J. Autonomic pathways in the orbit of the human fetus and the rhesus monkey. Doc Ophthalmol 72, 247–264 (1989). https://doi.org/10.1007/BF00153492

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00153492

Key words

Navigation