Skip to main content
Log in

Sensitivity of evapotranspiration in a wheat field, a forest, and a grassland to changes in climate and direct effects of carbon dioxide

  • Published:
Climatic Change Aims and scope Submit manuscript

Abstract

Micrometeorological and physiological measurements were used to develop Penman-Monteith models of evapotranspiration for a wheat field in eastern Nebraska, a forest in Tennessee, and a grassland in east-central Kansas. The model fit the measurements well over the periods of observation. Model sensitivities to changes in climatic and physiological parameters were then analyzed. The range of changes considered was established from recent general circulation model output and from review of recent plant physiological research. Finally, climate change scenarios produced by general circulation models for the locations and seasons matching the observed data were applied to the micrometeorological models. Simulation studies show that when all climatic and plant factors are considered, evapotranspiration estimates can differ greatly from those that consider only temperature. Depending on ecosystem and on climate and plant input used, evapotranspiration can differ from the control (no climate or plant change) by about -20 to +40%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aston, A. R.: 1984, ‘The Effects of Doubling CO2 on Streamflow: a Simulation’, Journal oj Hydrology 67, 273–280.

    Google Scholar 

  • Beven, K.: 1979, ‘A Sensitivity Analysis of the Penman-Monteith Actual Evapotranspiration Estimates’, Journal of Hydrology 44, 169–190.

    Google Scholar 

  • Bosch, J. M. and Hewlett, J. D.: 1982, ‘A Review of Catchment Experiments to Determine the Effect of Vegetation Changes on Water Yield and Evapotranspiration’, Journal of Hydrology 55, 3–23.

    Google Scholar 

  • Brutsaert, W.: 1982, Evaporation into the Atmosphere: Theory, History and Applications, D. Reidel Publ. Co., Dordrecht, Holland, 299 pp.

    Google Scholar 

  • Bultot, F., Dupriez, G. L., and Gellens, D.: 1988, ‘Estimated Annual Regime of Energy-Balance Components, Evapotranspiration, and Soil Moisture for a Drainage Basin in the Case of CO2 Doubling’, Climatic Change 12, 39–56.

    Google Scholar 

  • Campbell, G. S.: 1977, An Introduction to Environmental Biophysics, Springer-Verlag, New York, Heidelberg, Berlin, 159 pp.

    Google Scholar 

  • Campbell, G. S.: 1985, Soil Physics with BASIC: Transport Models for Soil-Plant Systems. Elsevier, Amsterdam, Oxford, New York, Tokyo, 150 pp.

    Google Scholar 

  • Choudhury, B. J. and Monteith, J. L.: 1986, ‘Implications of Stomatal Response to Saturation Deficit for the Heat Balance of Vegetation’, Agricultural and Forest Meteorology 36, 215–225.

    Google Scholar 

  • Dickinson, R. E.: 1984, ‘Modeling Evapotranspiration for Three-Dimensional Global Climate Models’, in J. E. Hansen and T. Takahashi (eds.), Climate Processes and Climate Sensitivity, Geophysical Monograph 29, American Geophysical Union, Washington, D.C., 58–72.

    Google Scholar 

  • Dickinson, R. E.: 1986, ‘How will Climate Change?’ In B. Bolin, B. R. Döös, J. Jäger, and R. A. Warrick (eds.), The Greenhouse Effect, Climatic Change, and Ecosystems, John Wiley and Sons, New York, Chichester, Brisbane, Toronto, Singapore, SCOPE 29, 207–269.

    Google Scholar 

  • Dufour, L. and Van Mieghem, J.: 1975, Thermodynamique de l'Atmosphère, Institute Royal Météorologique de Belgique, 278 pp.

  • Farquhar, G. D.: 1986, ‘Climate-Vegetation Interactions: Stomatal Conductance and Photosynthetic Capacity’, in C. Rosenzweig and R. E. Dickinson (eds.), Climate-Vegetation Interactions, UCAR, Report OIES-2, 15–19.

  • Finnigan, J. J. and Raupauch, M. R.: 1987, ‘Transfer Processes in Plant Canopies in Relation to Stomatal Characteristics’, in E. Zeiger, G. D. Farquhar, and I. R. Cowan (eds.), Stomatal Function, Stanford University Press, Stanford, California, 385–443.

    Google Scholar 

  • Gleick, P. H.: 1987, ‘Regional Consequences of Increases in Atmospheric CO2 and Other Trace Gases’, Climatic Change 10, 137–161.

    Google Scholar 

  • Hall, W. A.: 1971, ‘Biological Hydrological Systems’, in E. J. Monke (ed.), Biological Effects in the Hydrological Cycle - Terrestrial Phase, Proceedings of The Third International Seminar for Hydrology Professors, UNESCO, Paris, France, 1–7.

    Google Scholar 

  • Hansen, J., Russell, G., Rind, D., Stone, P., Lacis, A., Lebedeff, S., Ruedy, R., and Travis, L.: 1983, ‘Efficient Three-Dimensional Global Models for Climate Studies: Models I and II’, Month. Wea. Rev. 111, 609–662.

    Google Scholar 

  • Hibbert, A. R.: 1967, ‘Forest Treatment Effects on Water Yield’, in W. E. Sopper and H. W. Lull (eds.), International Symposium on Forest Hydrology, Pergamon Press, New York, 527–543.

    Google Scholar 

  • Hutchison, B. A., Matt, D. R., McMillen, R. T., Gross, L. J., Tajchman, S. J., and Norman, J. M.: 1986, ‘The Architecture of a Deciduous Forest Canopy in Eastern Tennessee, U.S.A.’, Journal of Ecology 74, 635–646.

    Google Scholar 

  • Idso, S. B. and Brazel, A. J.: 1984, ‘Rising Atmospheric Carbon Dioxide Concentration May Increase Streamflow’, Nature 312, 51–53.

    Google Scholar 

  • Jarvis, P. G. and McNaughton, K. G.: 1986, ‘Stomatal Control of Transpiration: Scaling up from Leaf to Region’, Advances in Ecological Research 15, 1–49.

    Google Scholar 

  • Jones, H. G.: 1983, Plants and the Microclimate: A Quantitative Approach to Environmental Plant Physiology, Cambridge University Press, Cambridge, New York, New Rochelle, Melbourne, Sydney, 323 pp.

    Google Scholar 

  • Kimball, B. A.: 1985, ‘Adaptation of Vegetation and Management Practices to a Higher Carbon Dioxide World’, in B. R. Strain and J. D. Cure (eds.), Direct Effects of Increasing Carbon Dioxide on Vegetation, DOE/ER-0238, Carbon Dioxide Research Division, U.S. Department of Energy, Washington, D.C., 185–204.

    Google Scholar 

  • Manabe, S. and Wetherald, R. T.: 1987, ‘Large-Scale Changes in Soil Wetness Induced by an Increase in Carbon Dioxide’, J. Atmospheric Sci. 44, 1211–1235.

    Google Scholar 

  • McCuen, R. H.: 1973, ‘The Role of Sensitivity Analysis in Hydrological Modeling’, Journal of Hydrology 18, 37–53.

    Google Scholar 

  • McNaughton, K. G. and Jarvis, P. G.: 1983, ‘Predicting Effects of Vegetation Changes on Transpiration and Evaporation’, in T. T. Kozlowski (ed.), Water Deficit and Plant Growth, Academic Press, New York, London, Paris, San Diego, San Francisco, São Paolo, Sydney, Toronto, 1–47.

    Google Scholar 

  • Mitchell, J. F. B.: 1988, ‘Local Effects of Greenhouse Gases’, Nature 332, 399–400.

    Google Scholar 

  • Monteith, J. L.: 1965, ‘Evaporation and Environment’, Symposium of the Society for Experimental Biology 19, 205–234.

    Google Scholar 

  • Monteith, J. L.: 1973, Principles of Environmental Physics, Edward Arnold, London, 241 pp.

    Google Scholar 

  • Morison, J. I. L.: 1987, ‘Intercellular CO2 Concentration and Stomatal Response to CO2’, in E. Zeiger, G. D. Farquhar, and I. R. Cowan (eds.), Stomatal Function, Stanford University Press, Stanford, California, 229–251.

    Google Scholar 

  • Paw U, K. T. and Gao, W.: 1988, ‘Applications of Solutions to Non-Linear Energy Budget Equations’, Agricultural and Forest Meteorology 43, 121–145.

    Google Scholar 

  • Press, W. H., Flannery, B. P., Tenkolsky, S. A., and Vetterling, W. T.: 1986, Numerical Recipes: The Art of Scientific Computing. Cambridge University Press, Cambridge, New York, New Rochelle, Melbourne, Sydney, 818 pp.

    Google Scholar 

  • Revelle, R. R. and Waggoner, P. E.: 1983, ‘Effects of a Carbon Dioxide-Induced Climatic Change on Water Supply in the Western United States’, in Changing Climate, National Academy of Sciences, National Academy Press, Washington, D.C., 419–432.

    Google Scholar 

  • Rosenberg, N. J. and Brown, K. W.: 1970, ‘Improvements in the Van Bavel-Myers Automatic Weighing Lysimeter’, Water Resources Research 6, 1227–1229.

    Google Scholar 

  • Rosenberg, N. J., Blad, B. L., and Verma, S. B.: 1983, Microclimate: The Biological Environment, John Wiley and Sons, New York, Chichester, Brisbane, Toronto, Singapore, 495 pp.

    Google Scholar 

  • Rosenberg, N. J., Kimball, B. A., Cooper, C. F., and Martin, Ph.: 1989, ‘Climate Change, CO2 Enrichment, and Evapotranspiration’, in P. E. Waggoner (ed.), Climate and Water: Climatic Change, Climate Variability, and the Planning and Management of U.S. Water Resources, John Wiley and Sons, New York, Chichester, Brisbane, Toronto, Singapore, (in press).

    Google Scholar 

  • Rutter, A. J.: 1975, ‘The Hydrological Cycle in Vegetation’, in J. L. Monteith (ed.), Vegetation and the Atmosphere, Volume 1, Principles. Academic Press, London, New York, San Francisco, 111–154.

    Google Scholar 

  • Saxon, K. E.: 1975, ‘Sensitivity Analyses of the Combination Evapotranspiration Equation’, Agricultural Meteorology 15, 343–353.

    Google Scholar 

  • Schneider, S. H., Gleick, P. H., and Mearns, L. O.: 1989, ‘Prospects for Climate Change’, in P. E. Waggoner (ed.), Climate Change and U.S. Water Resources, John Wiley and Sons, New York, Chichester, Brisbane, Toronto, Singapore, (in press).

    Google Scholar 

  • Sellers, P. J., Mintz, Y., Sud, Y. C., and Dachler, A.: 1986, ‘A Simple Biosphere Model (SiB) for Use within General Circulation Models’, J. Atmospheric Sci. 43, 505–531.

    Google Scholar 

  • Shukla, J. and Mintz, Y.: 1982, ‘Influences of Land-Surface Evapotranspiration on the Earth's Climate’, Science 215, 1498–1500.

    Google Scholar 

  • Stewart, J. B.: 1984, ‘Measurement and Prediction of Evaporation from Forested and Agricultural Catchments’, Agricultural Water Management 8, 1–28.

    Google Scholar 

  • Thom, A. S.: 1972, ‘Mass and Heat Exchange in Vegetation’, Quart. J. Roy. Meteor. Soc. 98, 124–134.

    Google Scholar 

  • van den Honert, T. H.: 1948, ‘Water Transport in Plants as a Catenary Process’, Discussions of the Faraday Society 3, 143–153.

    Google Scholar 

  • Verma, S. B., Baldocchi, D. D., Anderson, D. E., Matt, D. R., and Clement, R. J.: 1986, ‘Eddy Fluxes of CO2, Water Vapor, and Sensible Heat over a Deciduous Forest’, Boundary-Layer Meteorology 36, 71–91.

    Google Scholar 

  • Verma, S. B., Kim, J. K., and Clement, R. J.: 1988, ‘Carbon Dioxide, Water Vapor, and Sensible Heat Exchanges of a Tall Grass Prairie’, Boundary-Layer Meteorology 46, 53–67.

    Google Scholar 

  • Verstraete, M. M.: 1985, A Soil-Vegetation-Atmosphere Model for Micrometeorological Research in Arid Regions, Cooperative Thesis No. 88, Massachusetts Institute of Technology and National Center for Atmospheric Research, 167 pp.

  • Washington, W. M. and Meehl, G. A.: 1984, ‘Seasonal Cycle Experiment on the Climate Sensitivity Due to a Doubling of CO2 with an Atmospheric General Circulation Model Coupled to a Simple Mixed-Layer Ocean Model’, J. Geophys. Res. 89, 9475–9503.

    Google Scholar 

  • Woodward, F. I.: 1987a, ‘Stomatal Numbers are Sensitive to Increases in CO2 from Pre-Industrial Levels’, Nature 327, 617–618.

    Google Scholar 

  • Woodward, F. I.: 1987b, Climate and Plant Distribution, Cambridge University Press, Cambridge, New York, New Rochelle, Melbourne, Sydney, 174 pp.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martin, P., Rosenberg, N.J. & McKenney, M.S. Sensitivity of evapotranspiration in a wheat field, a forest, and a grassland to changes in climate and direct effects of carbon dioxide. Climatic Change 14, 117–151 (1989). https://doi.org/10.1007/BF00142724

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00142724

Keywords

Navigation