Skip to main content

Evapotranspiration Measurements and Calculations

  • Chapter
Springer Handbook of Atmospheric Measurements

Abstract

Actual and maximum rates of evaporation (E) and evapotranspiration (ET) are important to the operation of atmospheric process models and for hydrologic and agricultural modeling. Because rates of evapotranspiration are limited by both the available energy at the surface and the availability of water, a variety of techniques can be used for estimation. The near-maximum ET under nonlimiting water availability can be closely approximated by the reference ET concept using near-surface observations of air temperature, humidity, wind speed, and solar radiation via the Penman–Monteith or a similar method. The determination of actual rates of ET when water is limiting demands a more complex approach, and often requires daily (or even more frequent) water balance data for the upper soil layers. An alternative is to measure the actual ET using micrometeorological techniques such as the eddy-covariance and Bowen ratio methods. The application of standardized calculations for the reference ET is discussed, as are iterative surface energy balance–aerodynamic combinations, which are useful in conditions where water is limiting.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • W. Brutsaert: Hydrology (Cambridge Univ. Press, Cambridge 2005)

    Google Scholar 

  • R.G. Allen, L.S. Pereira, D. Raes, M. Smith: Crop Evaporation – Guidelines for Computing Crop Water Requirements (FAO, Rome 1998), FAO Irrigation Drainage Paper 56

    Google Scholar 

  • W.E.K. Middleton: Invention of the Meteorological Instruments (The Johns Hopkins Press, Baltimore 1969)

    Google Scholar 

  • E. Halley: An estimate of the quantity of vapour raised out of the sea by the warmth of the Sun; derived from an experiment shown before the Royal Society, at one of their late meetings, Philos. Trans. R. Soc. 16, 366–370 (1687)

    Google Scholar 

  • G.W. Richmann: Atmometri sive machinae hydrostaticae ad evaporationem aquae certae temperiei mensurandam aptae constructio talis, ut ope illius decrementum paucorum granorum observari et lex evaporationis confirmari possit, Novi Comment. Acad. Sci. Imp. Petropol. 2, 121–127 (1749)

    Google Scholar 

  • G.W. Richmann: Inquisitio in rationem phaenomeni, cur aqua profunda in vasis homogeneae materiae plus evaporet, quam aqua minus profunda et confirmatio experimento nova ratione instituto, Novi Comment. Acad. Sci. Imp. Petropol. 2, 134–144 (1749)

    Google Scholar 

  • E. Kleinschmidt (Ed.): Handbuch der Meteorologischen Instrumente und ihrer Auswertung (Springer, Berlin 1935)

    Google Scholar 

  • A. Piche: Note sur l’atmismomètre instrument destiné a mesurer l’évaporation, Bull. Hebd. Assoc. Sci. Fr. 10, 166–168 (1872)

    Google Scholar 

  • R. Sauermost, D. Freudig (Eds.): Lexikon der Biologie (Spektrum Akademischer Verlag, Heidelberg 2006), Gesamtausgabe in 14 Bänden

    Google Scholar 

  • G. Stanhill: The use of the Piche evaporimeter in the calculation of evaporation, Q. J. R. Meteorol. Soc. 88, 80–82 (1962)

    Google Scholar 

  • W. Czeratzki: Ein Verdunstungsmesser mit keramischer Scheibe, Landbauforsch. Völkenrode FAL Agric. Res. 18, 93–98 (1968)

    Google Scholar 

  • J. Altenhofen: A modified atmometer for on-farm evapotranspiration determination. In: Proc. Natl. Conf. Adv. Evapotranspiration (ASAE, St. Joseph 1985) pp. 177–184

    Google Scholar 

  • F. Chen, P.J. Robinson: Estimating reference crop evapotranspiration with ETgages, J. Irrig. Drain. Eng. 135, 335–342 (2009)

    Google Scholar 

  • H.L. Penman: Natural evaporation from open water, bare soil and grass, Proc. R. Soc. A 193, 120–195 (1948)

    Google Scholar 

  • W.O. Pruitt, J. Doorenbos: Empirical Calibration, a requisite for evapotranspiration formulae based on daily or longer mean climatic data? In: Proc. Int. Round Table Conf. Evapotranspiration, Budapest (1977)

    Google Scholar 

  • J.L. Wright, M.E. Jensen: Peak water requirements of crops in southern Idaho, J. Irrig. Drain. Div. 96, 193–201 (1972)

    Google Scholar 

  • T.P. DeFelice: An Introduction to Meteorological Instrumentation and Measurement (Prentice Hall, Upper Saddle River 1998)

    Google Scholar 

  • E.T. Linacre: Estimating U.S. Class A pan evaporation from climate data, Water Int. 19, 5–14 (1994)

    Google Scholar 

  • P.C. Sentelhas, M.V. Folegatti: Class-A pan coefficients (Kp) to estimate daily reference evapotranspiration (ETo), Rev. Bras. Eng. Agric. Ambient. 7, 111–115 (2003)

    Google Scholar 

  • A.G. Smajstrla, F.S. Zazueta, G.A. Clark, D.J. Pitts: Irrigation Scheduling with Evaporation Pans (Univ. Florida, Gainesville 2000), IFAS Bulletin 254

    Google Scholar 

  • M.E. Jensen, R.D. Burman, R.G. Allen: Evapotranspiration and Irrigation Water Requirements (ASCE, Reston 1990), ASCE Manuals and Reports on Engineering Practice No. 70

    Google Scholar 

  • W.J. Shuttleworth: Evaporation. In: Handbook of Hydrology, ed. by D.R. Maidment (McGraw-Hill Inc., New York 1992)

    Google Scholar 

  • R.G. Allen: Assessing the integrity of weather data for use in reference evapotranspiration, J. Irrig. Drain. Eng. 122, 97–106 (1996)

    Google Scholar 

  • J. Doorenbos, W.O. Pruitt: Guidelines for Predicting Crop Water Requirements, 2nd edn. (FAO, Rome 1977), FAO Irrigation Drainage Paper 24

    Google Scholar 

  • A.A. Young: Evaporation from Water Surfaces in California: A Summary of Pan Records and Coefficients 1881 to 1946 (California State Printing Office, Sacramento 1947), Bulletin No. 54

    Google Scholar 

  • L.A. Ramdas: Evaporation and potential evapotranspiration over the Indian sub-continent, Indian J. Agric. Sci. 27, 137–149 (1957)

    Google Scholar 

  • W.O. Pruitt: Relation of consumptive use of water to climate, Transactions ASAE 3, 9–13 (1960)

    Google Scholar 

  • W.O. Pruitt: Empirical method of estimating evapotranspiration using primarily evaporation pans. In: Proc. Conf. Evapotranspiration Its Role Water Resour. Manag, ed. by M.E. Jensen (ASAE, St. Joseph 1966) pp. 57–61

    Google Scholar 

  • Department of Water Resources: Vegetative Water Use in California, 1974 (CDWR, Sacramento 1975), DWR-Bulletin No. 113-3

    Google Scholar 

  • G.P. Srivastava: Surface Meteorological Instruments and Measurement Practices (Atlantic Publishers & Dist, New Delhi 2009)

    Google Scholar 

  • T. Foken: Micrometeorology, 2nd edn. (Springer, Berlin, Heidelberg 2017)

    Google Scholar 

  • C. Bernhofer: Estimating forest evapotranspiration at a non-ideal site, Agric. For. Meteorol. 60, 17–32 (1992)

    Google Scholar 

  • A.G. Barr, K.M. King, T.J. Gillespie, G.D. Hartog, H.H. Neumann: A comparison of Bowen ratio and eddy correlation sensible and latent heat flux measurements above deciduous forest, Bound.-Layer Meteorol. 71, 21–41 (1994)

    Google Scholar 

  • W.O. Pruitt, E. Fereres, K. Kaita, R.L. Snyder: Reference Evapotranspiration (ETo) for California 1987), Agriculture and Experiment Station Bulletin 1922

    Google Scholar 

  • A. Ohmura: Objective criteria for rejecting data for Bowen ratio flux calculations, J. Clim. Appl. Meteorol. 21, 595–598 (1982)

    Google Scholar 

  • T. Foken: The energy balance closure problem – An overview, Ecol. Appl. 18, 1351–1367 (2008)

    Google Scholar 

  • M. Mauder, T. Foken, J. Cuxart: Surface energy balance closure over land: A review, Bound.-Layer Meteorol. 177, 395–426 (2020)

    Google Scholar 

  • R.L. Snyder, P.W. Brown, K.G. Hubbard, S.J. Meyer: A guide to automated weather station networks in North America. In: Advances in Bioclimatology, Vol. 4, ed. by G. Stanhill (Springer, Berlin 1996) pp. 1–61

    Google Scholar 

  • H. Liu, G. Peters, T. Foken: New equations for sonic temperature variance and buoyancy heat flux with an omnidirectional sonic anemometer, Bound.-Layer Meteorol. 100, 459–468 (2001)

    Google Scholar 

  • P. Schotanus, F.T.M. Nieuwstadt, H.A.R. DeBruin: Temperature measurement with a sonic anemometer and its application to heat and moisture fluctuations, Bound.-Layer Meteorol. 26, 81–93 (1983)

    Google Scholar 

  • P.S. Eagleson: Climate, soil, and vegetation: 1. Introduction to water balance dynamics, Water Resour. Res. 14, 705–712 (1978)

    Google Scholar 

  • L. Mahrt: The bulk aerodynamic formulation over heterogeneous surfaces, Bound.-Layer Meteorol. 78, 87–119 (1996)

    Google Scholar 

  • J.R. Schott, S.J. Hook, J.A. Barsi, B.L. Markham, J. Miller, F.P. Padula, N.G. Raqueno: Thermal infrared radiometric calibration of the entire Landsat 4, 5, and 7 archive (1982–2010), Remote Sens. Environ. 122, 41–49 (2012)

    Google Scholar 

  • G.N. Panin, T. Foken: Air–sea interaction including a shallow and coastal zone, J. Atmos. Ocean Sci. 10, 289–305 (2005)

    Google Scholar 

  • W.H. Brutsaert: Evaporation into the Atmosphere: Theory, History and Application (D. Reidel, Dordrecht 1982)

    Google Scholar 

  • D. Richter: Zur einheitlichen Berechnung der Wassertemperatur und der Verdunstung von freien Wasserflächen auf statistischer Grundlage, Abhandlungen des Meteorologischen Dienstes der Deutschen Demokratischen Republik, Vol. 119 (Akademie-Verlag, Berlin 1977)

    Google Scholar 

  • C.H.B. Priestley, J.R. Taylor: On the assessment of surface heat flux and evaporation using large-scale parameters, Mon. Weather Rev. 100, 81–92 (1972)

    Google Scholar 

  • R.B. Stull: An Introduction to Boundary Layer Meteorology (Kluwer, Dordrecht 1988)

    Google Scholar 

  • H.A.R. DeBruin: A model for the Priestley-Taylor parameter α, J. Clim. Appl. Meteorol. 22, 572–578 (1983)

    Google Scholar 

  • S.P. Arya: Introduction to Micrometeorology (Academic Press, San Diego 2001)

    Google Scholar 

  • DVWK: Ermittlung der Verdunstung von Land- und Wasserflächen (DWA, Hennef 1996), DVWK-Merkblätter zur Wasserwirtschaft 238

    Google Scholar 

  • C.H.M. van Bavel: Potential evapotranspiration: The combination concept and its experimental verification, Water Resour. Res. 2, 455–467 (1986)

    Google Scholar 

  • M.E. Jensen, R.G. Allen (Eds.): Evaporation, Evapotranspiration, and Irrigation Water Requirements (ASCE, Reston 2016), https://doi.org/10.1061/9780784414057

    Book  Google Scholar 

  • D. Hillel: Environmental Soil Physics (Academic Press, New York 1998)

    Google Scholar 

  • H. Dommermuth, W. Trampf: Die Verdunstung in der Bundesrepublik Deutschland, Zeitraum 1951–1980, Teil 1 (DWD, Offenbach 1990)

    Google Scholar 

  • H. Schrödter: Verdunstung, Anwendungsorientierte Meßverfahren und Bestimmungsmethoden (Springer, Berlin, Heidelberg 1985)

    Google Scholar 

  • L. Turc: Évaluation des besoins en eau d’irrigation évapotranspiration potentielle, Ann. Agron. 12, 13–49 (1961)

    Google Scholar 

  • H.A.R. DeBruin, A.A.M. Holtslag: A simple parametrization of the surface fluxes of sensible and latent heat during daytime compared with the Penman-Monteith concept, J. Clim. Appl. Meteorol. 21, 1610–1621 (1982)

    Google Scholar 

  • J.L. Monteith: Evaporation and environment, Symp. Soc. Exp. Biol. 19, 205–234 (1965)

    Google Scholar 

  • B.B. Hicks, D.D. Baldocchi, T.P. Meyers, R.P. Hosker Jr., D.R. Matt: A preliminary multiple resistance routine for deriving dry deposition velocities from measured quantities, Water Air Soil Pollut. 36, 311–330 (1987)

    Google Scholar 

  • G. Kramm, M. Beier, T. Foken, H. Müller, P. Schröder, W. Seiler: A SVAT scheme for NO, NO2, and O3 – Model description and test results, Meteorol. Atmos. Phys. 61, 89–106 (1996)

    Google Scholar 

  • G. Schädler, N. Kalthoff, F. Fiedler: Validation of a model for heat, mass and momentum exchange over vegetated surfaces using LOTREX-10E/HIBE88 data, Contrib. Atmos. Phys. 63, 85–100 (1990)

    Google Scholar 

  • P.J. Sellers, J.L. Dorman: Testing the simple biospere model (SiB) for use in general circulation models, J. Clim. Appl. Meteorol. 26, 622–651 (1987)

    Google Scholar 

  • G. Groß: Numerical Simulation of Canopy Flows (Springer, Berlin, Heidelberg 1993)

    Google Scholar 

  • E.M. Gusev, O.N. Nasonova: Modelirovanie Teplo- i Vlagoobmena Poverchnosti Sushi s Atmosferoj (Moelling of the Heat and Moisture Exchange of Land Surfaces with the Atmosphere) (Nauka, Moskva 2010)

    Google Scholar 

  • A.K. Blackadar: Turbulence and Diffusion in the Atmosphere (Springer, Berlin, Heidelberg 1997)

    Google Scholar 

  • J.C. Kaimal, J.J. Finnigan: Atmospheric Boundary Layer Flows: Their Structure and Measurement (Oxford Univ. Press, New York 1994)

    Google Scholar 

  • J.R. Garratt: The Atmospheric Boundary Layer (Cambridge Univ. Press, Cambridge 1992)

    Google Scholar 

  • I. Alves, A. Perrier, L. Pereira: Aerodynamic and surface resistances of complete cover crops: How good is the 'Big Leaf'?, Transactions ASAE 41, 345–351 (1998)

    Google Scholar 

  • O.T. Denmead: Plant physiological methods for studying evapotranspiration: Problems of telling the forest from the trees, Agric. Water Manag. 8, 167–189 (1984)

    Google Scholar 

  • J.B. Stewart: A discussion of the relationships between the principal forms of the combination equation for estimating crop evaporation, Agric. Meteorol. 30, 111–127 (1983)

    Google Scholar 

  • R.G. Allen, W.O. Pruitt, J.L. Wright, T.A. Howell, F. Ventura, R. Snyder, D. Itenfisu, P. Steduto, J. Berengena, J.B. Yrisarry, M. Smith, L.S. Pereira, D. Raes, A. Perrier, I. Alves, I. Walter, R. Elliott: A recommendation on standardized surface resistance for hourly calculation of reference ETo by the FAO56 Penman-Monteith method, Agric. Water Manag. 81, 1–22 (2006)

    Google Scholar 

  • A.F. Moene, J.C. van Dam: Transport in the Atmosphere-Vegetation-Soil Continuum (Cambridge Univ. Press, Cambridge 2014)

    Google Scholar 

  • ASCE: The ASCE Standardized Reference Evapotranspiration Equation. Task Committee on Standardized Calculation of Reference Evapotranspiration Calculation (EWRI, Reston 2005)

    Google Scholar 

  • R.G. Allen, I.A. Walter, R. Elliott, T. Howell, D. Itenfisu, M. Jensen: The ASCE Standardized Reference Evapotranspiration Equation (EWRI, Reston 2005)

    Google Scholar 

  • R.G. Allen, M. Tasumi, A. Morse, R. Trezza, J.L. Wright, W. Bastiaanssen, W. Kramber, I. Lorite, C.W. Robison: Satellite-based energy balance for mapping evapotranspiration with internalized calibration (METRIC)—Applications, J. Irrig. Drain. Eng. 133, 395–406 (2007)

    Google Scholar 

  • G.G. Katul, M.B. Parlange: A Penman-Brutsaert model for wet surface evaporation, Water Resour. Res. 28, 121–126 (1992)

    Google Scholar 

  • B.J. Choudhury, S.B. Idso, R.J. Reginato: Analysis of an empirical model for soil heat flux under a growing wheat crop for estimating evaporation by an infrared-temperature based energy balance equation, Agric. For. Meteorol. 39, 283–297 (1987)

    Google Scholar 

  • R.G. Allen, W.O. Pruitt, J.A. Businger, L.J. Fritschen, M.E. Jensen, F.H. Quinn (Eds.): Evaporation and transpiration. In: ASCE Handbook of Hydrology, 2nd edn. (ASCE, New York 1996), Chap. 4

    Google Scholar 

  • M.E. Jensen: Water consumption by agricultural plants. In: Water Deficits and Plant Growth (Academic Press, New York 1968), Chap. 1

    Google Scholar 

  • J.L. Wright: New evapotranspiration crop coefficients, J. Irrig. Drain. Div. 108, 57–74 (1982)

    Google Scholar 

  • R.G. Allen, T.A. Howell, W.O. Pruitt, I.A. Walter, M.E. Jensen (Eds.): Lysimeters for evapotranspiration and environmental measurements. In: Proc. Int. Symp. Lysimetry (ASCE, Reston 1991)

    Google Scholar 

  • R.G. Allen, L.S. Pereira, T.A. Howell, M.E. Jensen: Evapotranspiration information reporting: I. Factors governing measurement accuracy, Agric. Water Manag. 98, 899–920 (2011)

    Google Scholar 

  • J.L. Wright: Crop coefficients for estimates of daily crop evapotranspiration. In: Proc. Irrig. Sched. Conf (ASAE, St. Joseph 1981) pp. 16–26

    Google Scholar 

  • J.A. Tolk, T.A. Howell: Measured and simulated evapotranspiration of grain sorghum with full and limited irrigation in three high plains soils, Transactions ASAE 44, 1553–1557 (2001)

    Google Scholar 

  • T.A. Howell, S.R. Evett, J.A. Tolk, A.D. Schneider: Evapotranspiration of full-, deficit-irrigated, and dryland cotton on the Northern Texas High Plains, J. Irrig. Drain. Eng. 130, 277–285 (2004)

    Google Scholar 

  • T.A. Howell, D.A. Dusek, J.A. Tolk, K.S. Copeland, P.D. Colaizzi, S.R. Evett: Crop coefficients developed at bushland, Texas for corn, wheat, sorghum, soybean, cotton, and alfalfa. In: Proc. World Environ. Water Resour. Congress 2006 (EWRI, Reston 2006)

    Google Scholar 

  • J.T. Ritchie: Model for predicting evaporation from a row crop with incomplete cover, Water Resour. Res. 8, 1204–1213 (1972)

    Google Scholar 

  • J.R. Philip: Evaporation, and moisture and heat fields in the soil, J. Meteorol. 14, 354–366 (1957)

    Google Scholar 

  • T.A. Black, W.R. Gardner, G.W. Thurtell: The prediction of evaporation, drainage, and soil water storage for a bare soil, Soil Sci. Soc. Am. J. 33, 655–660 (1969)

    Google Scholar 

  • S.B. Idso, R.J. Reginato, R.D. Jackson, B.A. Kimball, F.S. Nakayama: The three stages of drying of a field soil, Soil Sci. Soc. Am. J. 38, 831–837 (1974)

    Google Scholar 

  • J.T. Ritchie, J.E. Adams: Field measurement of evaporation from soil shrinkage cracks, Soil Sci. Soc. Am. J. 38, 131–134 (1974)

    Google Scholar 

  • C.M. Burt, A. Mutziger, D.J. Howes, K.H. Solomon: Evaporation from Irrigated Agricultural Land in California (ITRC, San Luis Obispo 2002), ITRC Report No. 02-001

    Google Scholar 

  • J.T. Ritchie, D.C. Godwin, U. Singh: Soil and weather inputs for the IBSNAT crop models. In: Proc. IBNAT Symp. Decis. Support Syst. Agrotechnol. Transf. Part 1 (Univ. Hawaii, Honolulu 1989) pp. 31–45

    Google Scholar 

  • R.G. Allen, L.S. Pereira, M. Smith, D. Raes, J.L. Wright: FAO-56 dual crop coefficient method for estimating evaporation from soil and application extensions, J. Irrig. Drain. Eng. 131, 2–13 (2005)

    Google Scholar 

  • R.G. Allen: Skin layer evaporation to account for small precipitation events—An enhancement to the FAO-56 evaporation model, Agricultural Water Management 99(1), 8–18 (2011)

    Google Scholar 

  • J. Doorenbos, A.H. Kassam: Yield Response to Water, 2nd edn. (FAO, Rome 1979), FAO Irrigation Drainage Paper 33

    Google Scholar 

  • D. Raes, P. Steduto, T.C. Hsiao, E. Fereres: AquaCrop—The FAO crop model to simulate yield response to water: II. Main algorithms and software description, Agron. J. 101, 438–447 (2009)

    Google Scholar 

  • L.F. Ratliff, J.T. Ritchie, D.K. Cassel: Field-measured limits of soil water availability as related to laboratory-measured properties, Soil Sci. Soc. Am. J. 47, 770–775 (1983)

    Google Scholar 

  • R.G. Allen, L.S. Pereira: Estimating crop coefficients from fraction of ground cover and height, Irrig. Sci. 28, 17–34 (2009)

    Google Scholar 

  • J.T. Ritchie: Evaluating irrigation needs for southeastern U.S.A. In: Spec. Conf. Contrib. Irrig. Drain. World Food Supply (ASCE, New York 1975) pp. 262–279

    Google Scholar 

  • J. Ringersma, A.F.S. Sikking: Determining transpiration coefficients of Sahelian vegetation barriers, Agrofor. Syst. 51, 1–9 (2001)

    Google Scholar 

  • K. Descheemaeker, D. Raes, R. Allen, J. Nyssen, J. Poesen, B. Muys, M. Haile, J. Deckers: Two rapid appraisals of FAO-56 crop coefficients for semiarid natural vegetation of the northern Ethiopian highlands, J. Arid Environ. 75, 353–359 (2011)

    Google Scholar 

  • J.T. Ritchie, D.S. Nesmith: Temperature and crop development. In: Modeling Plant and Soil Systems, Agronomy Monographs, Vol. 31, ed. by R.J. Hanks, J.T. Ritchie (ASA, Madison 1991) pp. 5–29

    Google Scholar 

  • T.R. Sinclair: Leaf area development in field-grown soybeans, Agron. J. 76, 141–146 (1984)

    Google Scholar 

  • R.L. Snyder, D. Spano, C. Cesaraccio, P. Duce: Determining degree-day thresholds from field observations, Int. J. Biometeorol. 42, 177–182 (1999)

    Google Scholar 

  • C. Cesaraccio, D. Spano, P. Duce, R.L. Snyder: An improved model for determining degree-day values from daily temperature data, Int. J. Biometeorol. 45, 161–169 (2001)

    Google Scholar 

  • J.E. Ayars, R.B. Hutmacher, R.A. Schoneman, R.W.O. Soppe, S.S. Vail, F. Dale: Realizing the potential of integrated irrigation and drainage water management for meeting crop water requirements in semi-arid and arid areas, Irrig. Drain. Syst. 13, 321–347 (1999)

    Google Scholar 

  • K. Djaman, S. Irmak: Actual crop evapotranspiration and alfalfa- and grass-reference crop coefficients of maize under full and limited irrigation and rainfed conditions, J. Irrig. Drain. Eng. 139, 433–446 (2013)

    Google Scholar 

  • S. Irmak, I. Kabenge, D. Rudnick, S. Knezevic, D. Woodward, M. Moravek: Evapotranspiration crop coefficients for mixed riparian plant community and transpiration crop coefficients for common reed, cottonwood and peach-leaf willow in the Platte River Basin, Nebraska-USA, J. Hydrol. 481, 177–190 (2013)

    Google Scholar 

  • A. Martínez-Cob: Use of thermal units to estimate corn crop coefficients under semiarid climatic conditions, Irrig. Sci. 26, 335–345 (2008)

    Google Scholar 

  • G. Piccinni, J. Ko, T. Marek, T. Howell: Determination of growth-stage-specific crop coefficients (Kc) of maize and sorghum, Agric. Water Manag. 96, 1698–1704 (2009)

    Google Scholar 

  • S. Kang, B. Gu, T. Du, J. Zhang: Crop coefficient and ratio of transpiration to evapotranspiration of winter wheat and maize in a semi-humid region, Agric. Water Manag. 59, 239–254 (2003)

    Google Scholar 

  • B. Duchemin, R. Hadria, S. Erraki, G. Boulet, P. Maisongrande, A. Chehbouni, R. Escadafal, J. Ezzahar, J.C.B. Hoedjes, M.H. Kharrou, S. Khabba, B. Mougenot, A. Olioso, J.C. Rodriguez, V. Simonneaux: Monitoring wheat phenology and irrigation in central Morocco: On the use of relationships between evapotranspiration, crops coefficients, leaf area index and remotely-sensed vegetation indices, Agric. Water Manag. 79, 1–27 (2006)

    Google Scholar 

  • J.L. Hatfield: Wheat canopy resistance determined by energy balance techniques, Agron. J. 77, 279–283 (1985)

    Google Scholar 

  • W.G.M. Bastiaanssen, M. Menenti, R.A. Feddes, A.A.M. Holtslag: A remote sensing surface energy balance algorithm for land (SEBAL). 1. Formulation, J. Hydrol. 212/213, 198–212 (1998)

    Google Scholar 

  • W.G.M. Bastiaanssen, H. Pelgrum, J. Wang, Y. Ma, J.F. Moreno, G.J. Roerink, T. van der Wal: A remote sensing surface energy balance algorithm for land (SEBAL). 2. Validation, J. Hydrol. 212/213, 213–229 (1998)

    Google Scholar 

  • M.C. Anderson, J.M. Norman, G.R. Diak, W.P. Kustas, J.R. Mecikalski: A two-source time-integrated model for estimating surface fluxes using thermal infrared remote sensing, Remote Sens. Environ. 60, 195–216 (1997)

    Google Scholar 

  • M.C. Anderson, J.M. Norman, W.P. Kustas, F. Li, J.H. Prueger, J.R. Mecikalski: Effects of vegetation clumping on two-source model estimates of surface energy fluxes from an agricultural landscape during SMACEX, J. Hydrometeorol. 6, 892–909 (2005)

    Google Scholar 

  • W.P. Kustas, J.M. Norman: Evaluation of soil and vegetation heat flux predictions using a simple two-source model with radiometric temperatures for partial canopy cover, Agric. For. Meteorol. 94, 13–29 (1999)

    Google Scholar 

  • W.P. Kustas, J.M. Norman, M.C. Anderson, A.N. French: Estimating subpixel surface temperatures and energy fluxes from the vegetation index–radiometric temperature relationship, Remote Sens. Environ. 85, 429–440 (2003)

    Google Scholar 

  • F. Li, W.P. Kustas, J.H. Prueger, C.M.U. Neale, T.J. Jackson: Utility of remote sensing-based two-source energy balance model under low- and high-vegetation cover conditions, J. Hydrometeorol. 6, 878–891 (2005)

    Google Scholar 

  • J.M. Norman, M.C. Anderson, W.P. Kustas, A.N. French, J. Mecikalski, R. Torn, G.R. Diak, T.J. Schmugge, B.C.W. Tanner: Remote sensing of surface energy fluxes at 101-m pixel resolutions, Water Resour. Res. 39, 1221 (2003)

    Google Scholar 

  • R.G. Allen, M. Tasumi, R. Trezza: Satellite-based energy balance for mapping evapotranspiration with internalized calibration (METRIC)—Model, J. Irrig. Drain. Eng. 133, 380–394 (2007)

    Google Scholar 

  • A. Irmak, R.G. Allen, J. Kjaersgaard, J. Huntington, B. Kamble, R. Trezza, I. Ratcliffe: Operational remote sensing of ET and challenges. In: Evapotranspiration, Remote Sensing and Modeling, ed. by A. Irmak (IntechOpen, London 2012) pp. 467–492

    Google Scholar 

  • M. Tasumi, R.G. Allen, R. Trezza, J.L. Wright: Satellite-based energy balance to assess within-population variance of crop coefficient curves, J. Irrig. Drain. Eng. 131, 94–109 (2005)

    Google Scholar 

  • R.K. Singh, A. Irmak: Estimation of crop coefficients using satellite remote sensing, J. Irrig. Drain. Eng. 135, 597–608 (2009)

    Google Scholar 

  • M.C. Anderson, C. Hain, B. Wardlow, A. Pimstein, J.R. Mecikalski, W.P. Kustas: Evaluation of drought indices based on thermal remote sensing of evapotranspiration over the continental United States, J. Clim. 24, 2025–2044 (2010)

    Google Scholar 

  • M.C. Anderson, R.G. Allen, A. Morse, W.P. Kustas: Use of Landsat thermal imagery in monitoring evapotranspiration and managing water resources, Remote Sens. Environ. 122, 50–65 (2012)

    Google Scholar 

  • M. Tasumi, R. Trezza, R.G. Allen, J.L. Wright: Operational aspects of satellite-based energy balance models for irrigated crops in the semi-arid U.S., Irrig. Drain. Syst. 19, 355–376 (2005)

    Google Scholar 

  • W.G.M. Bastiaanssen, E.J.M. Noordman, H. Pelgrum, G. Davids, B.P. Thoreson, R.G. Allen: SEBAL model with remotely sensed data to improve water-resources management under actual field conditions, J. Irrig. Drain. Eng. 131, 85–93 (2005)

    Google Scholar 

  • A. Kilic, R. Allen, R. Trezza, I. Ratcliffe, B. Kamble, C. Robison, D. Ozturk: Sensitivity of evapotranspiration retrievals from the METRIC processing algorithm to improved radiometric resolution of Landsat 8 thermal data and to calibration bias in Landsat 7 and 8 surface temperature, Remote Sens. Environ. 185, 198–209 (2016)

    Google Scholar 

  • D. de la Fuente-Sáiz, S. Ortega-Farías, D. Fonseca, S. Ortega-Salazar, A. Kilic, R. Allen: Calibration of METRIC model to estimate energy balance over a drip-irrigated apple orchard, Remote Sens. 9, 670 (2017)

    Google Scholar 

  • G. D’Urso, M. Menenti, A. Santini: Regional application of one-dimensional water flow models for irrigation management, Agric. Water Manag. 40, 291–302 (1999)

    Google Scholar 

  • S. Consoli, G. D’Urso, A. Toscano: Remote sensing to estimate ET-fluxes and the performance of an irrigation district in southern Italy, Agric. Water Manag. 81, 295–314 (2006)

    Google Scholar 

  • R. Leuning, Y.Q. Zhang, A. Rajaud, H. Cleugh, K. Tu: A simple surface conductance model to estimate regional evaporation using MODIS leaf area index and the Penman-Monteith equation, Water Resour. Res. 44, W10419 (2008)

    Google Scholar 

  • S. Ortega-Farías, S. Ortega-Salazar, T. Poblete, A. Kilic, R. Allen, C. Poblete-Echeverría, L. Ahumada-Orellana, M. Zuñiga, D. Sepúlveda: Estimation of energy balance components over a drip-irrigated olive orchard using thermal and multispectral cameras placed on a helicopter-based unmanned aerial vehicle (UAV), Remote Sens. 8, 638 (2016)

    Google Scholar 

  • J.M. Ramírez-Cuesta, A. Kilic, R. Allen, C. Santos, I.J. Lorite: Evaluating the impact of adjusting surface temperature derived from Landsat 7 ETM+ in crop evapotranspiration assessment using high-resolution airborne data, Int. J. Remote Sens. 38, 4177–4205 (2017)

    Google Scholar 

  • M.S. Moran, A.F. Rahman, J.C. Washburne, D.C. Goodrich, M.A. Weltz, W.P. Kustas: Combining the Penman-Monteith equation with measurements of surface temperature and reflectance to estimate evaporation rates of semiarid grassland, Agric. For. Meteorol. 80, 87–109 (1996)

    Google Scholar 

  • W. Kustas, M. Anderson: Advances in thermal infrared remote sensing for land surface modeling, Agric. For. Meteorol. 149, 2071–2081 (2009)

    Google Scholar 

  • C.M.U. Neale, W.C. Bausch, D.F. Heermann: Development of reflectance-based crop coefficients for corn, Transactions ASAE 32, 1891–1900 (1990)

    Google Scholar 

  • L.F. Johnson, T.J. Trout: Satellite NDVI assisted monitoring of vegetable crop evapotranspiration in California’s San Joaquin Valley, Remote Sens. 4, 439–455 (2012)

    Google Scholar 

  • M. Carrasco-Benavides, S. Ortega-Farías, L.O. Lagos, J. Kleissl, L. Morales, C. Poblete-Echeverría, R.G. Allen: Crop coefficients and actual evapotranspiration of a drip-irrigated Merlot vineyard using multispectral satellite images, Irrig. Sci. 30, 485–497 (2012)

    Google Scholar 

  • A. Calera, I. Campos, A. Osann, G. D’Urso, M. Menenti: Remote sensing for crop water management: From ET modelling to services for the end users, Sensors 17, E1104 (2017)

    Google Scholar 

  • VDI 3786, Blatt (Part) 21: Umweltmeteorologie – Meteorologische Messungen – Verdunstung (Environmental Meteorology – Meteorological Measurements – Evaporation) (Beuth, Berlin 2018)

    Google Scholar 

  • DWA: Ermittlung der Verdunstung von Land- und Wasserflächen, Teil 1: Grundlagen, Experimentelle Bestimmung, Gewässerverdunstung (Beuth, Berlin 2018), Merkblatt DWA-M 504-1

    Google Scholar 

  • T.C. Peterson, D.R. Easterling: Creation of homogeneous composite climatological reference series, Int. J. Climatol. 14, 671–679 (1994)

    Google Scholar 

  • M. Fuchs, C.B. Tanner: Error analysis of Bowen ratios measured by differential psychrometry, Agric. Meteorol. 7, 329–334 (1970)

    Google Scholar 

  • T.R. Sinclair, L.H. Allen Jr., E.R. Lemon: An analysis of errors in the calculation of energy flux densities above vegetation by Bowen-ratio profile method, Bound.-Layer Meteorol. 8, 129–139 (1975)

    Google Scholar 

  • T. Foken, S.H. Richter, H. Müller: Zur Genauigkeit der Bowen-Ratio-Methode, Wetter Leben 49, 57–77 (1997)

    Google Scholar 

  • W.A. Dugas, L.J. Fritschen, L.W. Gay, A.A. Held, A.D. Matthias, D.C. Reicosky, P. Steduto, J.L. Steiner: Bowen ratio, eddy correlation, and portable chamber measurements of sensible and latent heat flux over irrigated spring wheat, Agric. For. Meteorol. 56, 12–20 (1991)

    Google Scholar 

  • H. Liu, T. Foken: A modified Bowen ratio method to determine sensible and latent heat fluxes, Meteorol. Z. 10, 71–80 (2001)

    Google Scholar 

  • J.M. Frank, W.J. Massman, B.E. Ewers: Underestimates of sensible heat flux due to vertical velocity measurement errors in non-orthogonal sonic anemometers, Agric. For. Meteorol. 171/172, 72–81 (2013)

    Google Scholar 

  • T.W. Horst, S.R. Semmer, G. Maclean: Correction of a non-orthogonal, three-component sonic aanemometer for flow distortion by transducer shadowing, Bound.-Layer Meteorol. 155, 371–395 (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard Allen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Cite this chapter

Allen, R., Foken, T., Kilic, A., Trezza, R., Ortega-Farias, S. (2021). Evapotranspiration Measurements and Calculations. In: Foken, T. (eds) Springer Handbook of Atmospheric Measurements. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-030-52171-4_57

Download citation

Publish with us

Policies and ethics