Skip to main content
Log in

Natural genetic engineering in evolution

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

The results of molecular genetics have frequently been difficult to explain by conventional evolutionary theory. New findings about the genetic conservation of protein structure and function across very broad taxonomic boundaries, the mosaic structure of genomes and genetic loci, and the molecular mechanisms of genetic change all point to a view of evolution as involving the rearrangement of basic genetic motifs. A more detailed examination of how living cells restructure their genomes reveals a wide variety of sophisticated biochemical systems responsive to elaborate regulatory networks. In some cases, we know that cells are able to accomplish extensive genome reorganization within one or a few cell generations. The emergence of bacterial antibiotic resistance is a contemporary example of evolutionary change; molecular analysis of this phenomenon has shown that it occurs by the addition and rearrangement of resistance determinants and genetic mobility systems rather than by gradual modification of pre-existing cellular genomes. In addition, bacteria and other organisms have intricate repair systems to prevent genetic change by sporadic physicochemical damage or errors of the replication machinery. In their ensemble, these results show that living cells have (and use) the biochemical apparatus to evolve by a genetic engineering process. Future research will reveal how well the regulatory systems integrate genomic change into basic life processes during evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adzumi, A. & K. Mizuuchi, 1988. Target immunity of Mu transposition reflects a differential distribution of Mu B protein. Cell 53: 257–266.

    Google Scholar 

  • Akam, M., 1989. Hox and HOM: homologous gene clusters in insects and vertebrates. Cell 57: 347–349.

    Google Scholar 

  • Alt, F. W., T. K. Blackwell & G. D. Yancopoulos, 1987. Development of the primary antibody repertoire. Science 238: 1079–1087.

    Google Scholar 

  • Baker, M. E. & M. H. Saier Jr., 1990. A common ancestor for bovine lens fiber major intrinsic protein, soybean nodulin-26 protein, and E. coli glycerol facilitator. Cell 60: 185–186.

    Google Scholar 

  • Beerman, S., 1977. The diminution of heterochromatic chromosomal segments in Cyclops (Crustacea, Copepoda). Chromosoma 60: 297–344.

    Google Scholar 

  • Beerman, S. & G. F. Meyer, 1980. Chromatin rings as products of chromatin diminution in Cyclops. Chromosoma 77: 277–283.

    Google Scholar 

  • Berg, D. E., 1989. Transposon Tn5. pp. 185–210 in Mobile DNA (D.E. Berg and M. M. Howe, eds) American Society for Microbiology.

  • Berg, D. E. & M. M. Howe, 1989. Mobile DNA. American Society for Microbiology, Washington, D.C.

    Google Scholar 

  • Blackburn, E. H., 1991. Structure and function of telomeres. Nature 350: 569–573.

    Google Scholar 

  • Blackburn, E. H. & J. W. Szostak, 1984. The molecular structure of centromeres and telomeres. Ann. Rev. Biochem. 53: 163–194.

    Google Scholar 

  • Blackwell, T. K. & F. W. Alt, 1989. Mechanism and developmental program of immunoglobulin gene rearrangement in mammals. Ann. Rev. Genet. 23: 605–636.

    Google Scholar 

  • Blake, C. C. F., 1985. Exons and the evolution of proteins. Int. Rev. Cytol. 93: 149–185.

    Google Scholar 

  • Boeke, J. D. & V. Corces, 1989. Transcription and reverse transcription of retrotransposons. Ann. Rev. Microbiol. 43: 403–434.

    Google Scholar 

  • Boveri, T., 1887. Über Differenzierung der Zellkerne während der Furchung des Eies von Ascaris megalocephala. Anat. Anz. 2: 688–693.

    Google Scholar 

  • Bregliano, J.-C., & M. G. Kidwell, 1983. Hybrid dysgenesis determinants. pp. 363–410 in Mobile Genetic Elements (J. A. Shapiro, ed.) Academic Press.

  • Brosius, J., 1991. Retroposons-Seeds of evolution. Science 251: 753.

    Google Scholar 

  • Cairns, J., J. Overbaugh & S. Miller, 1988. The origin of mutants. Nature 335: 142–145.

    Google Scholar 

  • Casadesús, J. & J. Roth, 1989. Absence of insertions among spontaneous mutants of Salmonella typhimurium. Molec. Gen. Genet. 216: 210–216.

    Google Scholar 

  • Chandler, V. & V. Walbott, 1986. DNA modification of a maize transposable element correlated with loss of activity. Proc. Nat. Acad. Sci. USA 83: 1767–1771.

    Google Scholar 

  • Deininger, P. L., 1989. SINES: Short interspersed repeated DNA elements in higher eucaryotes. pp. 619–636 in Mobile DNA (D. E. Berg & M. M. Howe, eds) American Society for Microbiology.

  • Donehower, L. & D. Gillespie, 1979. Restriction site periodicities in highly repetitive DNA of primates. J. Mol. Biol. 134: 805–834.

    Google Scholar 

  • Dover, G. A., 1982. Molecular drive: a cohesive mode of species evolution. Nature 299: 111–117.

    Google Scholar 

  • Dowsett, A. P., 1983. Closely related species of Drosophila can contain different libraries of middle repetitive DNA sequences. Chromosoma 88: 104–108.

    Google Scholar 

  • Engels, W. R., 1989. P elements in Drosophila melanogaster. pp. 437–484 in Mobile DNA (D. E. Berg & M. M. Howe, eds) American Society for Microbiology.

  • Errede, B., T. S. Cardillo, G. Wever & F. Sherman, 1981. ROAM mutations causing increased expression of yeast genes: Their activation by signals directed toward conjugation functions and their formation by insertions of Ty1 repetitive elements. Cold Spr. Harb. Symp. Quant. Biol. 45: 593–607.

    Google Scholar 

  • Finnegan, D. J., 1989. The I factor and I-R Hybrid dysgenesis in Drosophila melanogaster, pp. 503–518 in Mobile DNA, edited by D. E. Berg & M. M. Howe. American Society for Microbiology.

  • Foster, T. J., 1983. Plasmid-determined resistance to antimicrobial drugs and toxic metal ions in bacteria. Microbiol. Rev. 47: 361–409.

    Google Scholar 

  • Galas, D. & M. Chandler, 1989. Bacterial insertion sequences. pp. 109–162 in Mobile DNA, edited by D. E. Berg & M. M. Howe. American Society for Microbiology.

  • Gall, J., 1986. The Molecular Biology of Ciliated Protozoa. Academic Press, Orlando.

    Google Scholar 

  • Gibbs, C. P., B.-Y. Reimann, E. Schultz, A. Kaufmann, R. Hass & T. F. Meyer, 1989. Reassortment of pilin genes in Neisseria gonorrhoeae occurs by two distinct mechanisms. Nature 338: 651–652.

    Google Scholar 

  • Gilbert, W., 1978. Why genes in pieces? Nature 271: 501.

    Google Scholar 

  • Glasgow, A. C., K. T. Hughes & M. I. Simon, 1989. Bacterial DNA inversion systems, pp. 637–660 in Mobile DNA, edited by D. E. Berg & M. M. Howe. American Society for Microbiology.

  • Goff, S. A., T. M. Klein, B. A. Roth, M. E. Fromm, K. C. Cone, J. P. Radicella & V. L. Chandler, 1990. Transactivation of anthocyanin biosynthetic genes following transfer of B regulatory genes into maize tissues. EMBO J. 9: 2517–2522.

    Google Scholar 

  • Gottesman, S., 1984. Bacterial regulation: global regulatory networks. Ann. Rev. Genet. 18: 415–441.

    Google Scholar 

  • Goodman, S. D. & J. J. Scocca, 1988. Identification and arrangement of the DNA sequence recognized in specific transformation of Neisseria gonorrhoeae. Proc. Nat. Acad. Sci. USA 85: 6982–6986.

    Google Scholar 

  • Hough, N., 1983. Has terminal transferase finally made it as a mutator of antibody genes? Trends Biochem. Sci.: 227–228.

  • Greslin, A. F., D. M. Prescott, Y. Oka, S. H. Loukin & J. C. Chappell, 1989. Reordering of nine exons is necessary to form a functional actin gene in Oxytricha nova. Proc. Nat. Acad. Sci. USA 86: 6264–6268.

    Google Scholar 

  • Hall, B. G., 1988. Adaptive evolution that requires multiple spontaneous mutations. I. Mutations involving an insertion sequence. Genetics 120: 887–897.

    Google Scholar 

  • Heffron, F., 1983. Tn3 and its relatives, pp. 223–260 in Mobile Genetic Elements, edited by J. A. Shapiro. Academic Press.

  • Helinski, D. R., S. N. Cohen, D. B. Clewell, D. A. Jackson & A. Hollaender, 1985. Plasmids in Bacteria. Plenum, New York.

    Google Scholar 

  • Highton, P. J., Y. Chang & R. J. Myers, 1990. Evidence for the exchange of segments between genomes during the evolution of lambdoid bacteriophages. Molec. Microbiol. 4: 1329–1340.

    Google Scholar 

  • Hoopes, B. C. & W. R. McClure, 1987. Strategies in regulation of transcription initiation, pp. 1231–1240, In Escherichia coli and Salmonella typhimurium edited by F. C. Neidhardt et al., American Society for Microbiology, Washington.

    Google Scholar 

  • Hutchison, C. A., S. C. Hardies, D. D. Loeb, W. R. Shehee & M. H. Edgell, 1989. LINES and related retroposons: Long interspersed repeated sequences in the eucaryotic genome, pp. 593–618 in Mobile DNA, edited by D. E. Berg & M. M. Howe. American Society for Microbiology.

  • Iida, S., J. Meyer & W. Arber, 1983. Prokaryotic IS Elements, pp. 159–221 in Mobile Genetic Elements, edited by J. A. Shapiro. Academic Press.

  • Inouye, S., T. Franceschini & M. Inouye, 1983. Structural similarities between the development-specific protein S from a Gram-negative bacterium, Myxococcus xanthus, and calmodulin. Proc. Nat. Acad. Sci. USA 80: 6829–6833.

    Google Scholar 

  • Johnson, P. F. & S. L. McKnight, 1989. Eukaryotic transcriptional regulatory proteins. Ann. Rev. Biochem. 58: 799–839.

    Google Scholar 

  • Klar, A. J. S., 1989. The interconversion of yeast mating type: Saccharomyces cerevisae and Schizosaccharomyces pombe, pp. 671–692 in Mobile DNA, edited by D. E. Berg & M. M. Howe. American Society for Microbiology.

  • Kleckner, N., 1989. Transposon Tn10, pp. 227–268 in Mobile DNA, edited by D. E. Berg & M. M. Howe. American Society for Microbiology.

  • Kushner, S. R., 1987. DNA repair. In Escherichia coli and Salmonella typhymurium (F. C. Neidhardt et al., eds), American Society for Microbiology, 1044–1053.

  • Laski, F. A., D. C. Rio & G. M. Rubin, 1986. Tissue specificity of Drosophila P element transposition is regulated at the level of mRNA splicing. Cell 44: 7–19.

    Google Scholar 

  • Lee, M. G. & P. Nurse, 1987. Complementation used to clone a human homologue of the fission yeast cell cycle control gene cdc2. Nature 327: 31–35.

    Google Scholar 

  • Linquist, S. & E. A. Craig, 1988. The heat-shock proteins. Ann. Rev. Genet. 22: 631–677.

    Google Scholar 

  • Marinus, M. G., 1987. Methylation of DNA, pp. 697–702 in Escherichia coli and Salmonella typhimurium, edited by F. C. Neidhardt et al. American Society for Microbiology, Washington.

  • McCann, J., N. E. Spingarn, J. Kobori & B. N. Ames, 1975. Detection of carcinogens as mutagens: bacterial tester strains with R factor plasmids. Proc. Nat. Acad. Sci. USA 72: 979–983.

    Google Scholar 

  • McClintock, B., 1950. The origin and behavior of mutable loci in maize. Proc. Nat. Acad. Sci. USA 36: 344–355.

    Google Scholar 

  • McClintock, B., 1951. Chromosome organization and genic expression. Cold Spr. Harb. Symp. Quant. Biol. 16: 13–47.

    Google Scholar 

  • McClintock, B., 1956. Controlling elements and the gene. Cold Spr. Harb. Symp. Quant. Biol. 21: 197–216.

    Google Scholar 

  • McClintock, B., 1965. The control of gene action in maize. Brookhaven Symp. Biol. 18: 162–184.

    Google Scholar 

  • McClintock, B., 1967. Genetic systems regulating gene expression during development. Develop. Biol. Suppl. 1: 84–112.

    Google Scholar 

  • McClintock, B., 1978. Mechanisms that rapidly reorganize the genome. Stadler Symp. 10: 25–47.

    Google Scholar 

  • McClintock, B., 1984. The significance of responses of the genome to challenge. Science 226: 792–801.

    Google Scholar 

  • McGinnis, N., M. A. Kuziora & W. McGinnis, 1990. Human Hox-4.2 and Drosophila Deformed encode similar regulatory specificities in Drosophila embryos and larvae. Cell 63: 969–976.

    Google Scholar 

  • Mercier, J., J. Lachapelle, F. Couture, M. Lafond, G. Vezina, M. Boissinot & R. C. Levesque, 1990. Structural and functional characterization of tnpI, a recombinase locus in Tn21 and related β-lactamase transposons. J. Bacteriol. 172: 3745–3757.

    Google Scholar 

  • Meyer, T. F. 1987. Molecular basis of surface antigen variation in Neisseria. Trends in Genet. 3: 319–324.

    Google Scholar 

  • Mittler, J. & R. E. Lenski, 1990. Further experiments on excisions of Mu from Escherichia coli MCS2 cast doubt on directed mutation hypothesis. Nature 344: 173–175.

    Google Scholar 

  • Modrich, P., 1987. DNA mismatch correction. Ann. Rev. Biochem. 56: 435–466.

    Google Scholar 

  • Müller, M. M., T. Gerster & W. Schaffner, 1988. Enhancer sequences and the regulation of gene transcription. Eur. J. Biochem. 176: 485–495.

    Google Scholar 

  • Peschke, V. M., R. L. Phillips & B. G. Gengenbach, 1987. Discovery of transposable element activity among progeny of tissue culture-derived maize plants. Science 238: 804–807.

    Google Scholar 

  • Ptashne, M., 1986. A Genetic Switch. Cell/Blackwell, Cambridge MA and Palo Alto.

    Google Scholar 

  • Riley, M. & S. Krawiec, 1987. Genome organization, pp. 967–981 in Escherichia coli and Salmonella typhimurium, edited by F. C. Neidhardt et al. American Society for Microbiology, Washington.

  • Rogers, J., 1985. The origin and evolution of retroposons. Int. Rev. Cytol. 93: 231–279.

    Google Scholar 

  • Rosenfeld, M. G., C. K. Glass, S. Adler, E. B. Crenshaw III, X. He, S. A. Lira, H. P. Elsholtz, H. J. Mangalam, J. M. Holloway, C. Nelson, V. R. Albert & H. A. Ingraham, 1989. Response and binding elements for ligand-dependent positive transcription factors integrate positive and negative regulation of gene expression. Cold Spr. Harb. Symp. Quant. Biol. 53: 545–556.

    Google Scholar 

  • Sadowski, P., 1986. Site-specific recombinases: Changing partners and doing the twist. J. Bacteriol. 165: 341.

    Google Scholar 

  • Scocca, J. J., 1990. The role of transformation in the variability of the Neisseria gonorrhoeae cell surface. Molec. Microbiol. 4: 321–327.

    Google Scholar 

  • Seifert, H. S., R. A. Ajioka, C. Marchal, P. F. Sparling & M. So, 198. DNA transformation leads to pilin antigenic variation in Neisseria gonorrhoeae. Nature 336: 392–395.

  • Shapiro, J. A., 1977. DNA insertion elements and the evolution of chromosome primary structure. Trends in Biochem. Sci. 2: 622–627.

    Google Scholar 

  • Shapiro, J. A., 1983. Mobile Genetic Elements. Academic Press, New York.

    Google Scholar 

  • Shapiro, J., 1984. Observations on the formation of clones containing araB-lacZ cistron fusions. Molec. Gen. Genet. 194: 79–90.

    Google Scholar 

  • Shapiro, J. A., 1991. Genomes as smart systems. Genetica 84: 3–4.

    Google Scholar 

  • Shapiro, J. A., A. I. Bukhari & Adhya, 1977. New Pathways in the evolution of chromosome structure, pp. 3–13 in DNA Insertion Elements, Plasmids and Episomes, edited by A. I. Bukhari, J. A. Shapiro and S. Adhya. Cold Spring Harbor Press.

  • Shapiro, J. A. & D. Leach, 1990. Action of a transposable element in coding sequence fusions. Genetics 126: 293–299.

    Google Scholar 

  • Smith, C. W. J., J. G. Patton & B. Nadal-Ginard, 1989. Alternative splicing in the control of gene expression. Ann. Rev. Genet. 23: 527–577.

    Google Scholar 

  • Smith, H. O., D. B. Danner & R. A. Reich, 1981. Genetic transformation. Ann. Rev. Biochem. 50: 41–68.

    Google Scholar 

  • Stahl, F. W., 1979. Special sites in generalized recombination. Ann. Rev. Genet. 13: 7–24.

    Google Scholar 

  • Stock, J. B., A. M. Stock & J. M. Mottonen, 1990. Signal transduction in bacteria. Nature 344: 395–400.

    Google Scholar 

  • Swanson, J. & J. M. Koomey, 1989. Mechanisms for variation of pili and outer membrane protein II in Neisseria gonorrhoeae, pp. 743–762 in Mobile DNA, edited by D. E. Berg & M. M. Howe. American Society for Microbiology.

  • Trifonov, E. N. & V. Brendel, 1986. GNOMIC: A Dictionary of Genetics Codes Balaban, Philadelphia.

    Google Scholar 

  • Walker, G. C., 1987. The SOS response of Escherichia coli, pp. 1346–1357 in Escherichia coli and Salmonella typhimurium edited by F. C. Neidhardt et al. American Society for Microbiology, Washington.

    Google Scholar 

  • Watanabe, T., 1963. Infective heredity of multiple drug resistance in bacteria. Bacteriol. Rev. 27: 87–115.

    Google Scholar 

  • Weiner, A. M., P. L. Deininger & A. Efstratiadis. 1986. Nonviral retroposons: Genes, pseudogenes and transposable elements generated by the reverse flow of genetic information. Ann. Rev. Biochem. 55: 631–661.

    Google Scholar 

  • Willets, N. S. & B. Wilkins, 1984. Processing of DNA during bacterial conjugation. Microbiol. Rev. 48: 24–41.

    Google Scholar 

  • Yao, M.-C., 1989. Site-specific chromosome breakage and DNA deletion in ciliates, pp. 715–734 in Mobile DNA, edited by D. E. Berg & M. M. Howe. American Society for Microbiology.

  • Zakian, V., 1989. Structure and function of telomeres. Ann. Rev. Genet. 23: 579–604.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shapiro, J.A. Natural genetic engineering in evolution. Genetica 86, 99–111 (1992). https://doi.org/10.1007/BF00133714

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00133714

Keywords

Navigation