Skip to main content
Log in

Long-range transport of Asian emissions to the West Pacific tropical tropopause layer

  • Published:
Journal of Atmospheric Chemistry Aims and scope Submit manuscript

Abstract

Rapid transport by deep convection is an important mechanism for delivering surface emissions of reactive halocarbons and other trace species to the tropical tropopause layer (TTL), a key region of transport to the stratosphere. Recent model studies have indicated that increased delivery of short-lived halocarbons to the TTL could delay stratospheric ozone recovery. We report here measurements in the TTL over the western Pacific Ocean of short-lived halocarbons and other trace gases that were transported eastward after convective lofting over Asia. Back-trajectories indicate the sampled air primarily originated from the Indian subcontinent. While short-lived organic bromine species show no measurable change over background mixing ratios, short-lived chlorinated organic species were elevated above background mixing ratios (dichloromethane (Δ48.2 ppt), 1,2-dichloroethane (Δ4.21 ppt), and chloroform (Δ4.85 ppt)), as well as longer-lived halogenated species, methyl chloride (Δ82.0 ppt) and methyl bromide (Δ1.91 ppt). This transported air mass thus contributed an excess equivalent effective chlorine burden of 316 ppt, with 119 ppt from short lived chlorinated species, to the TTL. Non-methane hydrocarbons (NMHC) were elevated 60 - 400% above background mixing ratios. The NMHC measurements were used to characterize the potential source regions, which are consistent with the convective influence analysis. The measurements indicate a chemical composition heavily impacted by biofuel/biomass burning and industrial emissions. This work shows that convection can loft Asian emissions, including short-lived chlorocarbons, and transport them to the remote TTL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

POSIDON data is available at https://espoarchive.nasa.gov/archive/browse/posidon.

References

  • Adcock, K.E., Fraser, P.J., Hall, B.D., Langenfelds, R.L., Lee, G., Montzka, S.A., Oram, D.E., Röckmann, T., Stroh, F., Sturges, W.T., Vogel, B., Laube, J.C.: Aircraft-based observations of ozone-depleting substances in the upper troposphere and lower stratosphere in and above the Asian summer monsoon. J. Geophys. Res. Atmos. (2020). https://doi.org/10.1029/2020JD033137

    Article  Google Scholar 

  • Andrews, S.J., Carpenter, L.J., Apel, E.C., Atlas, E., Donets, V., Hopkins, J.R., Hornbrook, R.S., Lewis, A.C., Lidster, R.T., Lueb, R., Minaeian, J., Navarro, M., Punjabi, S., Riemer, D., Schauffler, S.: A comparison of very short lived halocarbon (VSLS) and DMS aircraft measurements in the tropical west Pacific from CAST. ATTREX and CONTRAST. Atmos. Meas. Tech. 9, 5213–5225 (2016). https://doi.org/10.5194/amt-9-5213-2016

    Article  Google Scholar 

  • Ashfold, M.J., Harris, N.R.P., Atlas, E.L., Manning, A.J., Pyle, J.A.: Transport of short-lived species into the Tropical Tropopause Layer. Atmos. Chem. Phys. 12, 6309–6322 (2012). https://doi.org/10.5194/acp-12-6309-2012

    Article  Google Scholar 

  • Ashfold, M.J., Pyle, J.A., Robinson, A.D., Meneguz, E., Nadzir, M.S.M., Phang, S.M., Samah, A.A., Ong, S., Ung, H.E., Peng, L.K., Yong, S.E., Harris, N.R.P.: Rapid transport of East Asian pollution to the deep tropics. Atmos. Chem. Phys. 15, 3565–3573 (2015). https://doi.org/10.5194/acp-15-3565-2015

    Article  Google Scholar 

  • Atkinson, R., Baulch, D.L., Cox, R.A., Hampson, R.F., Kerr, J.A., Rossi, M.J., Troe, J.: Evaluated Kinetic, Photochemical and Heterogeneous Data for Atmospheric Chemistry: Supplement V. IUPAC Subcommittee on Gas Kinetic Data Evaluation for Atmospheric Chemistry. J. Phys. Chem. Ref. Data. 26, 521–1011 (1997). https://doi.org/10.1063/1.556011

  • Atkinson, R.: Kinetics of the gas-phase reactions of OH radicals with alkanes and cycloalkanes. Atmos. Chem. Phys. 3, 2233–2307 (2003). https://doi.org/10.5194/acp-3-2233-2003

    Article  Google Scholar 

  • Baker, A.K., Schuck, T.J., Slemr, F., Van Velthoven, P., Zahn, A., Brenninkmeijer, C.A.M.: Characterization of non-methane hydrocarbons in Asian summer monsoon outflow observed by the CARIBIC aircraft. Atmos. Chem. Phys. 11, 503–518 (2011). https://doi.org/10.5194/acp-11-503-2011

    Article  Google Scholar 

  • Barletta, B., Meinardi, S., Simpson, I.J., Atlas, E.L., Beyersdorf, A.J., Baker, A.K., Blake, N.J., Yang, M., Midyett, J.R., Novak, B.J., McKeachie, R.J., Fuelberg, H.E., Sachse, G.W., Avery, M.A., Campos, T., Weinheimer, A.J., Rowland, F.S., Blake, D.R.: Characterization of volatile organic compounds (VOCs) in Asian and north American pollution plumes during INTEX-B: Identification of specific Chinese air mass tracers. Atmos. Chem. Phys. 9, 5371–5388 (2009). https://doi.org/10.5194/acp-9-5371-2009

    Article  Google Scholar 

  • Brinckmann, S., Engel, A., Bönisch, H., Quack, B., Atlas, E.: Short-lived brominated hydrocarbons – observations in the source regions and the tropical tropopause layer. Atmos. Chem. Phys. 12, 1213–1228 (2012). https://doi.org/10.5194/acp-12-1213-2012

    Article  Google Scholar 

  • Brioude, J., Portmann, R.W., Daniel, J.S., Cooper, O.R., Frost, G.J., Rosenlof, K.H., Granier, C., Ravishankara, A.R., Montzka, S.A., Stohl, A.: Variations in ozone depletion potentials of very short-lived substances with season and emission region. Geophys. Res. Lett. 37, 3–7 (2010). https://doi.org/10.1029/2010GL044856

    Article  Google Scholar 

  • Butler, J.H.: Better budgets for methyl halides? Nature 403, 260–261 (2000). https://doi.org/10.1038/35002232

    Article  Google Scholar 

  • Claxton, T., Hossaini, R., Wild, O., Chipperfield, M.P., Wilson, C.: On the Regional and Seasonal Ozone Depletion Potential of Chlorinated Very Short-Lived Substances. Geophys. Res. Lett. 46, 5489–5498 (2019). https://doi.org/10.1029/2018GL081455

    Article  Google Scholar 

  • Cox, M.L., Sturrock, G.A., Fraser, P.J., Siems, S.T., Krummel, P.B., O’Doherty, S.: Regional sources of methyl chloride, chloroform and dichloromethane identified from AGAGE observations at Cape Grim, Tasmania, 1998–2000. J. Atmos. Chem. 45, 79–99 (2003). https://doi.org/10.1023/A:1024022320985

    Article  Google Scholar 

  • Donets, V., Atlas, E.L., Pan, L.L., Schauffler, S.M., Honomichl, S., Hornbrook, R.S., Apel, E.C., Campos, T., Hall, S.R., Ullmann, K., Bresch, J.F., Navarro, M., Blake, D.R.: Wintertime Transport of Reactive Trace Gases From East Asia Into the Deep Tropics. J. Geophys. Res. Atmos. 123, 12877–12896 (2018). https://doi.org/10.1029/2017JD028231

    Article  Google Scholar 

  • de Gouw, J.A., Warneke, C., Scheeren, H.A., Van Der Veen, C., Bolder, M., Scheele, M.P., Williams, J., Wong, S., Lange, L., Fischer, H., Lelieveld, J.: Overview of the trace gas measurements on board the Citation aircraft during the intensive field phase of INDOEX. J. Geophys. Res. Atmos. 106, 28453–28467 (2001). https://doi.org/10.1029/2000JD900810

    Article  Google Scholar 

  • Engel, A., Rigby, M., Burkholder, J., Fernandez, R.P., Froidevaux, L., Hall, B.D., Hossaini, R., Saito, T., Vollmer, M.K., Yao, B.: Update on Ozone-Depleting Substances (ODSs) and Other Gases of Interest to the Montreal Protocol, Chapter 1 in Scientific Assessment of Ozone Depletion: 2018, Global Ozone Research and Monitoring Project - Report No. 58. , Geneva, Switzerland (2018)

  • EPA: Draft Scope of the Risk Evaluation for 1,2-Dichloroethane. (2020)

  • Fang, X., Park, S., Saito, T., Tunnicliffe, R., Ganesan, A.L., Rigby, M., Li, S., Yokouchi, Y., Fraser, P.J., Harth, C.M., Krummel, P.B., Mühle, J., O’Doherty, S., Salameh, P.K., Simmonds, P.G., Weiss, R.F., Young, D., Lunt, M.F., Manning, A.J., Gressent, A., Prinn, R.G.: Rapid increase in ozone-depleting chloroform emissions from China. Nat. Geosci. 12, 89–93 (2019). https://doi.org/10.1038/s41561-018-0278-2

    Article  Google Scholar 

  • Feng, Y., Bie, P., Wang, Z., Wang, L., Zhang, J.: Bottom-up anthropogenic dichloromethane emission estimates from China for the period 2005–2016 and predictions of future emissions. Atmos. Environ. 186, 241–247 (2018). https://doi.org/10.1016/j.atmosenv.2018.05.039

    Article  Google Scholar 

  • Fiehn, A., Quack, B., Stemmler, I., Ziska, F., Krüger, K.: Importance of seasonally resolved oceanic emissions for bromoform delivery from the tropical Indian Ocean and west Pacific to the stratosphere. Atmos. Chem. Phys. 18, 11973–11990 (2018). https://doi.org/10.5194/acp-18-11973-2018

    Article  Google Scholar 

  • Filus, M.T., Atlas, E.L., Navarro, M.A., Meneguz, E., Thomson, D., Ashfold, M.J., Carpenter, L.J., Andrews, S.J., Harris, N.R.P.: Transport of short-lived halocarbons to the stratosphere over the Pacific Ocean. Atmos. Chem. Phys. 20, 1163–1181 (2020). https://doi.org/10.5194/acp-20-1163-2020

    Article  Google Scholar 

  • Flocke, F., Herman, R.L., Salawitch, R.J., Atlas, E., Webster, C.R., Schauffler, S.M., Lueb, R.A., May, R.D., Moyer, E.J., Rosenlof, K.H., Scott, D.C., Blake, D.R., Bui, T.P.: An examination of chemistry and transport processes in the tropical lower stratosphere using observations of long-lived and short-lived compounds obtained during STRAT and POLARIS. J. Geophys. Res. Atmos. 104, 26625–26642 (1999). https://doi.org/10.1029/1999JD900504

    Article  Google Scholar 

  • Fueglistaler, S., Dessler, A.E., Dunkerton, T.J., Folkins, I., Fu, Q., Mote, P.W.: Tropical tropopause layer. Rev. Geophys. 47, 1–31 (2009). https://doi.org/10.1029/2008RG000267

    Article  Google Scholar 

  • Fuhlbrügge, S., Quack, B., Tegtmeier, S., Atlas, E., Hepach, H., Shi, Q., Raimund, S., Krüger, K.: The contribution of oceanic halocarbons to marine and free tropospheric air over the tropical West Pacific. Atmos. Chem. Phys. 16, 7569–7585 (2016). https://doi.org/10.5194/acp-16-7569-2016

    Article  Google Scholar 

  • Gao, R.S., Ballard, J., Watts, L.A., Thornberry, T.D., Ciciora, S.J., McLaughlin, R.J., Fahey, D.W.: A compact, fast UV photometer for measurement of ozone from research aircraft. Atmos. Meas. Tech. 5, 2201–2210 (2012). https://doi.org/10.5194/amt-5-2201-2012

    Article  Google Scholar 

  • Guo, H., Wang, T., Simpson, I.J., Blake, D.R., Yu, X.M., Kwok, Y.H., Li, Y.S.: Source contributions to ambient VOCs and CO at a rural site in eastern China. Atmos. Environ. 38, 4551–4560 (2004). https://doi.org/10.1016/j.atmosenv.2004.05.004

    Article  Google Scholar 

  • Hall, B.D., Engel, A., Mühle, J., Elkins, J.W., Artuso, F., Atlas, E., Aydin, M., Blake, D., Brunke, E.G., Chiavarini, S., Fraser, P.J., Happell, J., Krummel, P.B., Levin, I., Loewenstein, M., Maione, M., Montzka, S.A., O’Doherty, S., Reimann, S., Rhoderick, G., Saltzman, E.S., Scheel, H.E., Steele, L.P., Vollmer, M.K., Weiss, R.F., Worthy, D., Yokouchi, Y.: Results from the International Halocarbons in Air Comparison Experiment (IHALACE). Atmos. Meas. Tech. 7, 469–490 (2014). https://doi.org/10.5194/amt-7-469-2014

    Article  Google Scholar 

  • Hossaini, R., Atlas, E., Dhomse, S.S., Chipperfield, M.P., Bernath, P.F., Fernando, A.M., Mühle, J., Leeson, A.A., Montzka, S.A., Feng, W., Harrison, J.J., Krummel, P., Vollmer, M.K., Reimann, S., O’Doherty, S., Young, D., Maione, M., Arduini, J., Lunder, C.R.: Recent Trends in Stratospheric Chlorine From Very Short-Lived Substances. J. Geophys. Res. Atmos. 124, 2318–2335 (2019). https://doi.org/10.1029/2018JD029400

    Article  Google Scholar 

  • Hossaini, R., Chipperfield, M.P., Montzka, S.A., Leeson, A.A., Dhomse, S.S., Pyle, J.A.: The increasing threat to stratospheric ozone from dichloromethane. Nat. Commun. 8, 1–9 (2017). https://doi.org/10.1038/ncomms15962

    Article  Google Scholar 

  • Islam, M.R., Jayarathne, T., Simpson, I.J., Werden, B., Maben, J., Gilbert, A., Praveen, P.S., Adhikari, S., Panday, A.K., Rupakheti, M., Blake, D.R., Yokelson, R.J., Decarlo, P.F., Keene, W.C., Stone, E.A.: Ambient air quality in the Kathmandu Valley, Nepal, during the pre-monsoon: Concentrations and sources of particulate matter and trace gases. Atmos. Chem. Phys. 20, 2927–2951 (2020). https://doi.org/10.5194/acp-20-2927-2020

    Article  Google Scholar 

  • Kim, J., Joan Alexander, M.: A new wave scheme for trajectory simulations of stratospheric water vapor. Geophys. Res. Lett. 40, 5286–5290 (2013). https://doi.org/10.1002/grl.50963

    Article  Google Scholar 

  • Krüger, K., Quack, B.: Introduction to special issue: The transbrom sonne expedition in the tropical west pacific. Atmos. Chem. Phys. 13, 9439–9446 (2013). https://doi.org/10.5194/acp-13-9439-2013

    Article  Google Scholar 

  • Lai, S.C., Baker, A.K., Schuck, T.J., Van Velthoven, P., Oram, D.E., Zahn, A., Hermann, M., Weigelt, A., Slemr, F., M. Brenninkmeijer, C.A., Ziereis, H.: Pollution events observed during CARIBIC flights in the upper troposphere between South China and the Philippines. Atmos. Chem. Phys. 10, 1649–1660 (2010). https://doi.org/10.5194/acp-10-1649-2010

  • Lal, S., Sahu, L.K., Venkataramani, S., Mallik, C.: Light non-methane hydrocarbons at two sites in the Indo-Gangetic Plain. J. Environ. Monit. 14, 1159–1166 (2012). https://doi.org/10.1039/c2em10682e

  • Lelieveld, J., Gromov, S., Pozzer, A., Taraborrelli, D.: Global tropospheric hydroxyl distribution, budget and reactivity. Atmos. Chem. Phys. 16, 12477–12493 (2016). https://doi.org/10.5194/acp-16-12477-2016

    Article  Google Scholar 

  • Levine, J.G., Braesicke, P., Harris, N.R.P., Savage, N.H., Pyle, J.A.: Pathways and timescales for troposphere-to-stratosphere transport via the tropical tropopause layer and their relevance for very short lived substances. J. Geophys. Res. 112, D04308 (2007). https://doi.org/10.1029/2005JD006940

    Article  Google Scholar 

  • Liu, Y., Yvon-Lewis, S.A., Hu, L., Salisbury, J.E., O’Hern, J.E.: CHBr3 , CH2Br2 , and CHClBr2 in U.S. coastal waters during the Gulf of Mexico and East Coast Carbon cruise. J. Geophys. Res. 116, C10004 (2011). https://doi.org/10.1029/2010JC006729

  • Mallik, C., Ghosh, D., Ghosh, D., Sarkar, U., Lal, S., Venkataramani, S.: Variability of SO2, CO, and light hydrocarbons over a megacity in Eastern India: Effects of emissions and transport. Environ. Sci. Pollut. Res. 21, 8692–8706 (2014). https://doi.org/10.1007/s11356-014-2795-x

    Article  Google Scholar 

  • Manö, S., Andreae, M.O.: Emission of methyl bromide from biomass burning. Science (80-. ). 263, 1255–1257 (1994). https://doi.org/10.1126/science.263.5151.1255

  • Montzka, S.A., Reimannander, S., Engel, A., Kruger, K., Simon, O., Sturges, W.T., Blake, D.R., Dorf, M.D., Fraser, P.J., Froidevaux, L., Jucks, K., Kreher, K., Kurylo III, M.J., Mellouki, A., Jo, D.P.V.: Chapter 1: Ozone-depleting Substances (ODSs) and Related Chemicals. In: Scientific Assessment of Ozone Depletion: 2010,Global Ozone Research and Monitoring Project-Report No.52 (2011)

  • Oram, D.E., Ashfold, M.J., Laube, J.C., Gooch, L.J., Humphrey, S., Sturges, W.T., Leedham-Elvidge, E., Forster, G.L., Harris, N.R.P., Iqbal Mead, M., Samah, A.A., Phang, S.M., Ou-Yang, C.F., Lin, N.H., Wang, J.L., Baker, A.K., Brenninkmeijer, C.A.M., Sherry, D.: A growing threat to the ozone layer from short-lived anthropogenic chlorocarbons. Atmos. Chem. Phys. 17, 11929–11941 (2017). https://doi.org/10.5194/acp-17-11929-2017

  • Orbe, C., Waugh, D.W., Newman, P.A.: Air-mass origin in the tropical lower stratosphere: The influence of Asian boundary layer air. Geophys. Res. Lett. 42, 4240–4248 (2015). https://doi.org/10.1002/2015GL063937

    Article  Google Scholar 

  • Pfister, L., Selkirk, H.B., Starr, D.O., Rosenlof, K., Newman, P.A.: A meteorological overview of the TC4 mission. J. Geophys. Res. Atmos. 115, 1–24 (2010). https://doi.org/10.1029/2009JD013316

    Article  Google Scholar 

  • Pisso, I., Haynes, P.H., Law, K.S.: Emission location dependent ozone depletion potentials for very short-lived halogenated species. Atmos. Chem. Phys. 10, 12025–12036 (2010). https://doi.org/10.5194/acp-10-12025-2010

    Article  Google Scholar 

  • Prinn, R.G., Weiss, R.F., Arduini, J., Arnold, T., DeWitt, H.L., Fraser, P.J., Ganesan, A.L., Gasore, J., Harth, C.M., Hermansen, O., Kim, J., Krummel, P.B., Li, S., Loh, Z.M., Lunder, C.R., Maione, M., Manning, A.J., Miller, B.R., Mitrevski, B., Mühle, J., O’Doherty, S., Park, S., Reimann, S., Rigby, M., Saito, T., Salameh, P.K., Schmidt, R., Simmonds, P.G., Steele, L.P., Vollmer, M.K., Wang, R.H., Yao, B., Yokouchi, Y., Young, D., Zhou, L.: History of chemically and radiatively important atmospheric gases from the Advanced Global Atmospheric Gases Experiment (AGAGE). Earth Syst. Sci. Data. 10, 985–1018 (2018). https://doi.org/10.5194/essd-10-985-2018

    Article  Google Scholar 

  • Quack, B., Atlas, E., Petrick, G., Wallace, D.W.R.: Bromoform and dibromomethane above the Mauritanian upwelling: Atmospheric distributions and oceanic emissions. J. Geophys. Res. 112, D09312 (2007). https://doi.org/10.1029/2006JD007614

    Article  Google Scholar 

  • Rex, M., Wohltmann, I., Ridder, T., Lehmann, R., Rosenlof, K., Wennberg, P., Weisenstein, D., Notholt, J., Krüger, K., Mohr, V., Tegtmeier, S.: A tropical West Pacific OH minimum and implications for stratospheric composition. Atmos. Chem. Phys. 14, 4827–4841 (2014). https://doi.org/10.5194/acp-14-4827-2014

    Article  Google Scholar 

  • Rollins, A.W., Thornberry, T.D., Atlas, E., Navarro, M., Schauffler, S., Moore, F., Elkins, J.W., Ray, E., Rosenlof, K., Aquila, V., Gao, R.S.: SO2 Observations and Sources in the Western Pacific Tropical Tropopause Region. J. Geophys. Res. Atmos. 123, 13549–13559 (2018). https://doi.org/10.1029/2018JD029635

    Article  Google Scholar 

  • Rollins, A.W., Thornberry, T.D., Ciciora, S.J., McLaughlin, R.J., Watts, L.A., Hanisco, T.F., Baumann, E., Giorgetta, F.R., Bui, T.V., Fahey, D.W., Gao, R.-S.: A laser-induced fluorescence instrument for aircraft measurements of sulfur dioxide in the upper troposphere and lower stratosphere. Atmos. Meas. Tech. 9, 4601–4613 (2016). https://doi.org/10.5194/amt-9-4601-2016

    Article  Google Scholar 

  • Rudolph, J., Khedim, A., Koppmann, R., Bonsang, B.: Field study of the emissions of methyl chloride and other halocarbons from biomass burning in Western Africa. J. Atmos. Chem. 22, 67–80 (1995). https://doi.org/10.1007/BF00708182

    Article  Google Scholar 

  • Sahu, L.K., Lal, S., Venkataramani, S.: Distributions of O3, CO and hydrocarbons over the Bay of Bengal: A study to assess the role of transport from southern India and marine regions during September-October 2002. Atmos. Environ. 40, 4633–4645 (2006). https://doi.org/10.1016/j.atmosenv.2006.02.037

    Article  Google Scholar 

  • Santee, M.L., Livesey, N.J., Manney, G.L., Lambert, A., Read, W.G.: Methyl chloride from the Aura Microwave Limb Sounder: First global climatology and assessment of variability in the upper troposphere and stratosphere. J. Geophys. Res. Atmos. 118, 13532–13560 (2013). https://doi.org/10.1002/2013JD020235

    Article  Google Scholar 

  • Sarangi, T., Naja, M., Lal, S., Venkataramani, S., Bhardwaj, P., Ojha, N., Kumar, R., Chandola, H.C.: First observations of light non-methane hydrocarbons (C2-C5) over a high altitude site in the central Himalayas. Atmos. Environ. 125, 450–460 (2016). https://doi.org/10.1016/j.atmosenv.2015.10.024

  • Say, D., Ganesan, A.L., Lunt, M.F., Rigby, M., O’Doherty, S., Harth, C., Manning, A.J., Krummel, P.B., Bauguitte, S.: Emissions of halocarbons from India inferred through atmospheric measurements. Atmos. Chem. Phys. 19, 9865–9885 (2019). https://doi.org/10.5194/acp-19-9865-2019

    Article  Google Scholar 

  • Schauffler, S.M., Atlas, E.L., Blake, D.R., Flocke, F., Lueb, R.A., Lee-Taylor, J.M., Stroud, V., Travnicek, W.: Distributions of brominated organic compounds in the troposphere and lower stratosphere. J. Geophys. Res. Atmos. 104, 21513–21535 (1999). https://doi.org/10.1029/1999JD900197

    Article  Google Scholar 

  • Scheeren, H.A., Lelieveld, J., De Gouw, J.A., Van Der Veen, C., Fischer, H.: Methyl chloride and other chlorocarbons in polluted air during INDOEX. J. Geophys. Res. Atmos. 107, (2002). https://doi.org/10.1029/2001JD001121

  • Schoeberl, M.R., Jensen, E.J., Pfister, L., Ueyama, R., Avery, M., Dessler, A.E.: Convective Hydration of the Upper Troposphere and Lower Stratosphere. J. Geophys. Res. Atmos. 123, 4583–4593 (2018). https://doi.org/10.1029/2018JD028286

    Article  Google Scholar 

  • Sherwood, S.C., Chae, J.-H., Minnis, P., McGill, M.: Underestimation of deep convective cloud tops by thermal imagery. Geophys. Res. Lett. 31, L11102 (2004). https://doi.org/10.1029/2004GL019699

    Article  Google Scholar 

  • Simmonds, P.G., Manning, A.J., Cunnold, D.M., McCulloch, A., O’Doherty, S., Derwent, R.G., Krummel, P.B., Fraser, P.J., Dunse, B., Porter, L.W., Wang, R.H.J., Greally, B.R., Miller, B.R., Salameh, P., Weiss, R.F., Prinn, R.G.: Global trends, seasonal cycles, and European emissions of dichloromethane, trichloroethene, and tetrachloroethene from the AGAGE observations at Mace Head, Ireland and Cape Grim. Tasmania. J. Geophys. Res. Atmos. 111, 1–19 (2006). https://doi.org/10.1029/2006JD007082

    Article  Google Scholar 

  • Simpson, I.J., Akagi, S.K., Barletta, B., Blake, N.J., Choi, Y., Diskin, G.S., Fried, A., Fuelberg, H.E., Meinardi, S., Rowland, F.S., Vay, S.A., Weinheimer, A.J., Wennberg, P.O., Wiebring, P., Wisthaler, A., Yang, M., Yokelson, R.J., Blake, D.R.: Boreal forest fire emissions in fresh Canadian smoke plumes: C1–C10 volatile organic compounds (VOCs), CO2, CO, NO2, NO, HCN and CH3CN. Atmos. Chem. Phys. 11, 6445–6463 (2011). https://doi.org/10.5194/acp-11-6445-2011

    Article  Google Scholar 

  • Solomon, S., Albritton, D.L.: Time-dependent ozone depletion potentials for short- and long-term forecasts. Nature 357, 33–37 (1992). https://doi.org/10.1038/357033a0

    Article  Google Scholar 

  • Tang, J.H., Chan, L.Y., Chang, C.C., Liu, S., Li, Y.S.: Characteristics and sources of non-methane hydrocarbons in background atmospheres of eastern, southwestern, and southern China. J. Geophys. Res. Atmos. 114, (2009). https://doi.org/10.1029/2008JD010333

  • Tegtmeier, S., Atlas, E., Quack, B., Ziska, F., Krüger, K.: Variability and past long-term changes of brominated very short-lived substances at the tropical tropopause. Atmos. Chem. Phys. 20, 7103–7123 (2020). https://doi.org/10.5194/acp-20-7103-2020

    Article  Google Scholar 

  • Tegtmeier, S., Krüger, K., Quack, B., Atlas, E., Blake, D.R., Boenisch, H., Engel, A., Hepach, H., Hossaini, R., Navarro, M.A., Raimund, S., Sala, S., Shi, Q., Ziska, F.: The contribution of oceanic methyl iodide to stratospheric iodine. Atmos. Chem. Phys. 13, 11869–11886 (2013). https://doi.org/10.5194/acp-13-11869-2013

    Article  Google Scholar 

  • Tegtmeier, S., Krüger, K., Quack, B., Atlas, E.L., Pisso, I., Stohl, A., Yang, X.: Emission and transport of bromocarbons: From the West Pacific ocean into the stratosphere. Atmos. Chem. Phys. 12, 10633–10648 (2012). https://doi.org/10.5194/acp-12-10633-2012

    Article  Google Scholar 

  • Trudinger, C.M., Etheridge, D.M., Sturrock, G.A., Fraser, P.J., Krummel, P.B., McCulloch, A.: Atmospheric histories of halocarbons from analysis of Antarctic firn air: Methyl bromide, methyl chloride, chloroform, and dichloromethane. J. Geophys. Res. D Atmos. 109, 1–15 (2004). https://doi.org/10.1029/2004JD004932

    Article  Google Scholar 

  • Ueyama, R., Jensen, E.J., Pfister, L.: Convective Influence on the Humidity and Clouds in the Tropical Tropopause Layer During Boreal Summer. J. Geophys. Res. Atmos. 123, (2018). https://doi.org/10.1029/2018JD028674

  • Ueyama, R., Jensen, E.J., Pfister, L., Kim, J.: Dynamical, convective, and microphysical control on wintertime distributions of water vapor and clouds in the tropical tropopause layer. J. Geophys. Res. Atmos. 120, 2689–2705 (2015). https://doi.org/10.1002/2015JD023318

    Article  Google Scholar 

  • Umezawa, T., Baker, A.K., Oram, D., Sauvage, C., O’Sullivan, D., Rauthe-Schöch, A., Montzka, S.A., Zahn, A., Brenninkmeijer, C.A.M.: Methyl chloride in the upper troposphere observed by the CARIBIC passenger aircraft observatory: Large-scale distributions and Asian summer monsoon outflow. J. Geophys. Res. Atmos. 119, 5542–5558 (2014). https://doi.org/10.1002/2013JD021396

    Article  Google Scholar 

  • Vogel, B., Müller, R., Günther, G., Spang, R., Hanumanthu, S., Li, D., Riese, M., Stiller, G.P.: Lagrangian simulations of the transport of young air masses to the top of the Asian monsoon anticyclone and into the tropical pipe. Atmos. Chem. Phys. 19, 6007–6034 (2019). https://doi.org/10.5194/acp-19-6007-2019

    Article  Google Scholar 

  • Warwick, N.J., Pyle, J.A., Shallcross, D.E.: Global modelling of the atmospheric methyl bromide budget. J. Atmos. Chem. 54, 133–159 (2006). https://doi.org/10.1007/s10874-006-9020-3

    Article  Google Scholar 

  • Wofsy, S.C.: HIAPER Pole-to-Pole Observations (HIPPO): fine-grained, global-scale measurements of climatically important atmospheric gases and aerosols. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 369, 2073–2086 (2011). https://doi.org/10.1098/rsta.2010.0313

  • Wuebbles, D.J., Luther, F.M., Penner, J.E.: Effect of coupled anthropogenic perturbations on stratospheric ozone. J. Geophys. Res. 88, 1444 (1983). https://doi.org/10.1029/JC088iC02p01444

    Article  Google Scholar 

  • Xue, L., Wang, T., Simpson, I.J., Ding, A., Gao, J., Blake, D.R., Wang, X., Wang, W., Lei, H., Jin, D.: Vertical distributions of non-methane hydrocarbons and halocarbons in the lower troposphere over northeast China. Atmos. Environ. 45, 6501–6509 (2011). https://doi.org/10.1016/j.atmosenv.2011.08.072

    Article  Google Scholar 

  • Yates, E.L., Derwent, R.G., Simmonds, P.G., Greally, B.R., O’Doherty, S., Shallcross, D.E.: The seasonal cycles and photochemistry of C2–C5 alkanes at Mace Head. Atmos. Environ. 44, 2705–2713 (2010). https://doi.org/10.1016/j.atmosenv.2010.04.043

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the engineers, technicians, and pilots of National Aeronautics and Space Administration (NASA) Armstrong Flight Research Center, and NASA-ESPO Project Management, and all POSIDON participants. A special thank you to the lead PIs Ru-Shan Gao and Eric Jensen. We thank Richard Lueb and Roger Hendershot for technical support in the field, and Leslie Pope for WAS support. Thanks to Geoff Dutton, Eric Hintsa, and J. David Nance at NOAA/CIRES. This work was supported by NASA Grants NNX13AH20G and NNX17AE43G, and National Science Foundation Grant AGS-1853948. We acknowledge the NOAA Air Resources Laboratory for use of the HYSPLIT model and the NASA EOSDIS for use of the use of imagery from the NASA Worldview application (https://worldview.earthdata.nasa.gov/). POSIDON data is available at https://espoarchive.nasa.gov/archive/browse/posidon.

Funding

NASA Grants NNX13AH20G and NNX17AE43G, and NSF Grant AGS-1853948.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victoria Treadaway.

Ethics declarations

Conflicts of interest

The authors have no conflicts of interests to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 5.47 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Treadaway, V., Atlas, E., Schauffler, S. et al. Long-range transport of Asian emissions to the West Pacific tropical tropopause layer. J Atmos Chem 79, 81–100 (2022). https://doi.org/10.1007/s10874-022-09430-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10874-022-09430-7

Keywords

Navigation