Skip to main content
Log in

Protective effects of propionyl-L-carnitine during ischemia and reperfusion

  • Published:
Cardiovascular Drugs and Therapy Aims and scope Submit manuscript

Summary

When cardiac function in isolated rat hearts was impaired by subjecting them to ischemia, subsequent perfusion with propionyl-L-carnitine and related compounds increased their rate of recovery. Thus at 11 mM, both propionyl-L-carnitine and, to a lesser extent, its taurine amide, and also acetyl-L-carnitine, significantly restored cardiac function in 15 minutes after 90 minutes of either low-flow or intermittent no-flow ischemia. Carnitine itself was ineffective. Propionyl-L-carnitine also increased tissue ATP and creatine phosphate compared with controls, but did not affect the levels of long-chain acyl carnitine and coenzyme. These esters also depleted fatty acid peroxidation, as shown with malonaldehyde, and were more effective than carnitine in preventing the production of superoxide. In myocytes, propionyl-L-carnitine alone stimulated palmitate oxidation, but in rat heart homogenates, both L-carnitine and propionyl-L-carnitine did so, while acetyl-L-carnitine was actually inhibitory. Possible mechanisms for the protective action of propionyl-L-carnitine against ischemia include an increased rate of cellular transport, stimulation of fatty acid oxidation, and a reduction of free radical formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Folts JD, Shug AL, Koke JR, Bittar N. Protection of the ischemic dog myocardium with carnitine. Am J Cardiol 1978;41:1209–1214.

    Article  PubMed  CAS  Google Scholar 

  2. Suzuki Y, Kamikawa T, Kobayashi A, et al. Effects of L-carnitine on tissue levels of acyl carnitine, acyl coenzyme A and high energy phosphate in ischemic dog hearts. Jpn Circ J 1981;45:687–694.

    PubMed  CAS  Google Scholar 

  3. Liedtke AJ, Nellis SH, Copenhaver G. Effects of carnitine in ischemic and fatty acid supplemented swine hearts. J Clin Invest 1979;64:440–447.

    Article  PubMed  CAS  Google Scholar 

  4. Liedtke AJ, Nellis SH, Whitesell LG. Effect of carnitine isomers on fatty acid metabolism in ischemic swine hearts. Circ Res 1981;48:859–866.

    PubMed  CAS  Google Scholar 

  5. Liedtke AJ, Vary TC, Nellis SH, Fultz CW. Properties of carnitine incorporation in working swine hearts. Circ Res 1982;50:767–774.

    PubMed  CAS  Google Scholar 

  6. Suzuki Y, Kamikawa T, Yamazaki N. Effects of L-carnitine on ventricular arrhythmias in dogs with acute myocardial ischemia and supplement of excess free fatty acids. Jpn Cir J 1981;45:552–559.

    CAS  Google Scholar 

  7. Kotaka J, Miyazaki Y, Ogawa K, et al. Protection by carnitine against free fatty acid-induced arrhythmia in canine heart. J Appl Biochem 1981;3:292–300.

    CAS  Google Scholar 

  8. Suzuki Y, Narita M, Yamazaki N. Effects of L-carnitine on arrhythmias during hemodialysis. Jpn Heart J 1981;23: 349–359.

    Google Scholar 

  9. DiPalma JR, Ritchie DM, McMichael RF. Cardiovascular and antiarrhythmic effects of carnitine. Arch Int Pharmacodyn 1975;217:246–250.

    Google Scholar 

  10. Thomsen JH, Shug AL, Yap VU, et al. Improved pacing tolerance of the ischemic human myocardium after administration of carnitine. Am J Cardiol 1979;43:300–306.

    Article  PubMed  CAS  Google Scholar 

  11. Ferrari R, Cucchini F, Visioli O. The metabolic effects of L-carnitine in angina pectoris. Int J Cardiol 1984;5:213–216.

    Article  PubMed  CAS  Google Scholar 

  12. Ferrari R, Cucchini F, DiLisa F, et al. The effect of L-carnitine (carnitene) on myocardial metabolism of patients with coronary artery disease. Clinical Trials J 1984;21: 40–58.

    Google Scholar 

  13. Kosolcharoen P, Nappi J. Peduzzi P, et al. Improved exercise tolerance after administration of carnitine. Curr Therap Res 1981;30:753–764.

    Google Scholar 

  14. Kamikawa T, Suzuki Y, Kobayashi A, et al. Effects of L-carnitine on exercise tolerance in patients with stable angina. Jpn Heart J 1984;25:587–597.

    PubMed  CAS  Google Scholar 

  15. Neely JR, Garber D, McDonough K, Idell-Wenger J. Relationship between ventricular function and intermediates of fatty acid metabolism during myocardial ischemia: Effects of carnitine. In: Winbury MM, Abiko Y, eds. Ischemic myocardium and antianginal drugs. New York: Raven Press, 1979;225–234.

    Google Scholar 

  16. Hearse D, Shattock MJ, Manning AS, Braimbridge MV. Protection of the myocardium during ischemic arrest: Possible toxicity of carnitine in cardioplegic solutions. J Thorac Cardiovasc Surg 1980;28:253–258.

    Article  CAS  Google Scholar 

  17. Paulson DJ, Shug AL. Effects of carnitine on the ischemic arrested heart. Basic Res Cardiol 1982;77:460–463.

    Article  PubMed  CAS  Google Scholar 

  18. Gilmour RF, Williams ES, Farmer BB, Zipes DP. Effects of carnitine and atractyloside on canine cardiac electrical activity. Am J Physiol 1981;241:H505-H512.

    PubMed  CAS  Google Scholar 

  19. Paulson DJ, Schmidt MJ, Romens J, Shug AL. Metabolic and physiological differences between zero-flow and low-flow myocardial ischemia: Effects of acetyl-L-carnitine. Basic Res Cardiol 1984;79:551–561.

    Article  PubMed  CAS  Google Scholar 

  20. Parvin R, Pande SV. Microdetermination of (-)carnitine and carnitine acetyltransferase activity. Anal Biochem 1977;79: 190–201.

    Article  PubMed  CAS  Google Scholar 

  21. Velso D, Veech RL. Stoichiometric hydrolysis of long-chain acyl CoA and measurement of acyl CoA formed with an enzymatic cycling method. Anal Biochem 1974;62:449–460.

    Article  Google Scholar 

  22. Alfred JB, Guy GD. Determination of coenzyme A and acetyl CoA in tissue extract. Anal Biochem 1969;29:293–299.

    Article  Google Scholar 

  23. Stanley PE, William SG. Use of liquid scintillation spectrometers for determining ATP by the luciferase enzyme. Anal Biochem 1969;29:381–392.

    Article  PubMed  CAS  Google Scholar 

  24. Shumate JB, Carroll JE, Brooks MH, Choksi RM. Palmitate oxidation in human muscle: Comparison to CPT and carnitine. Muscle Nerve 1982;5:226–231.

    Article  PubMed  CAS  Google Scholar 

  25. Lindgren CA, Paulson DJ, Shanahan MF. Isolated cardiac myocyte: A new cellular model for studying insulin modulation of monosaccharide transport. Biochim Biophys Acta 1982;721:385–393.

    Article  PubMed  CAS  Google Scholar 

  26. Shug AL, Subramanian R. Modulation of adenine nucleotide translocase activity during myocardial ischemia. Z Kardiol 1987;76:26–33.

    PubMed  CAS  Google Scholar 

  27. Shug AL, Paulson DJ. Fatty acid and carnitine-linked abnormalities during ischemia and cardiomyopathy. In: Ferrari R, Katz A, Shug A, eds. Myocardium ischemia and lipid metabolism. New York: Plenum Press, 1984:203–223.

    Google Scholar 

  28. Turrens J, Alexandre A, Lehninger A. Ubisemiquinone is the electron donor for superoxide formation by complex 111 of heart mitochondria. Arch Biochem Biophys 1985;237: 408–414.

    Article  PubMed  CAS  Google Scholar 

  29. Tubbs PK, Ramsay RR, Edwards MR. Inhibitors of carnitine transport and metabolism. In: Carnitine biosynthesis, metabolism and function. New York: Academic Press, 1980:110:255–262.

    Google Scholar 

  30. Neely JA, Morgan HE. Relationship between carbohydrate and lipid metabolism and the energy balance of heart muscle. Ann Rev Physiol 1974;36:413–459.

    Article  CAS  Google Scholar 

  31. Davis EF, Spydevold O, Bremer J. Pyruvate carboxylase and propionyl-CoA carboxylase as anaplerotic enzymes in skeletal muscle mitochondria. Eur J Biochem 1980;110: 255–262.

    Article  PubMed  CAS  Google Scholar 

  32. Vary TC, Neely JR. Characterization of carnitine transport in isolated perfused adult rat hearts. Am J Physiol 1982;242:H585–592.

    PubMed  CAS  Google Scholar 

  33. Paulson DJ, Traxler J, Schmidt M, et al. Protection of the ischemic myocardium by propionyl-L-carnitine: Effects on the recovery of cardiac output after ischemia and reperfusion, carnitine transport and fatty acid oxidation. Cardiovasc Res 1986;20:536–541.

    Article  PubMed  CAS  Google Scholar 

  34. Molstad P. The efflux of L-carnitine from cells in culture (CCL27). Biochim Biophys Acta 1980;597:166–173.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This paper is basically a review of previously published studies [33], although some new data (Tables 4 and 6; Figure 4) has been included. Copyright permission has been obtained from Cardiovascular Research to use this data in the present paper.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shug, A., Paulson, D., Subramanian, R. et al. Protective effects of propionyl-L-carnitine during ischemia and reperfusion. Cardiovasc Drug Ther 5, 77–83 (1991). https://doi.org/10.1007/BF00128246

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00128246

Key Words

Navigation