Skip to main content
Log in

Degradation of polychlorinated phenols by Streptomyces rochei 303

  • Published:
Biodegradation Aims and scope Submit manuscript

Abstract

The strain Streptomyces rochei 303 (VKM Ac-1284D) is capable of utilizing 2-chloro-,2,4-,2,6-dichloro- and 2,4,6-trichlorophenols as the sole source of carbon. Its resting cells completely dechlorinated and degraded 2-, 3-chloro-; 2,4-, 2,6-, 2,3-, 2,5-, 3,4-, 3,5-dichloro-; 2,4-, 2,6-dibromo-; 2,4,6-, 2,4,5-, 2,3,4-, 2,3,5-, 2,3,6-trichlorophenols; 2,3,5,6-tetrachloro- and pentachlorophenol. During chlorophenol degradation, a stoichiometric amount of chloride ions was released and chlorohydroquinols were formed as intermediates. In cell-free extracts of S. rochei, the activity of hydroxyquinol 1,2-dioxygenase was found. The enzyme was induced with chlorophenols. Of all so far described strains degrading polychlorophenols, S. rochei 303 utilized a wider range of chlorinated phenols as the sole sourse of carbon and energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CP:

chlorophenol

DCP:

dichlorophenol

TCP:

trichlorophenol

TeCP:

tetrachlorophenol

PCP:

pentachlorophenol

DBrP:

dibromophenol

CHQ:

chlorohydroquinol

DCHQ:

dichlorohydroquinol

HHQ:

hydroxyhydroquinol

CHHQ:

chlorohydroxyhydroquinol

CC:

chlorocatechol

TLC:

thin layer chromatography

GC/MC:

chromato-mass-spectrometry

HPLC:

high-performance liquid chromatography

References

  • Apajalachti JA & Salkinoja-Salonen MS (1986) Degradation of polychlorinated phenols by Rhodococcus chlorophenolicus. Appl. Microbiol. Biotechnol. 25:62–67

    Google Scholar 

  • Apajalachti JA & Salkinoja-Salonen MS (1987a) Dechlorination and para-hydroxylation of polychlorinated phenols by Rhodococcus chlorophenolicus. J. Bacteriol. 169: 675–681

    Google Scholar 

  • Apajalachti JHA & Salkinoja-Salonen MS (1987b) Complete dechlorination of tetrachlorohydroquinone by cell extracts of pentachlorophenol-induced Rhodococcus chlorophenolicus. J. Bacteriol. 169: 5124–5130

    Google Scholar 

  • Chapman PJ & Ribbons LW (1976) Metabolism of resorcinolic compounds by bacteria: alternative pathways for resorcinol catabolism in Pseudomonas putida. J. Bacteriol. 125: 985–998

    Google Scholar 

  • Chu JI & Kirsch EJ (1973) Utilization of halophenols by a pentachlorophenol metabolizing bacterium. Develop. Ind. Microb. 14: 264–273

    Google Scholar 

  • Dakin HD (1909) The oxidation of hydroxy derivatives of benzaldehyde, acetophenone and related substances. Am. Chem. J. 42: 477–498

    Google Scholar 

  • Dorn E & Knackmuss H-J (1978) Chemical structure and biodegradability of halogenated aromatic compounds. Two catechol 1,2-dioxygenases from a 3-chlorobenzoate-grown pseudomonad. Biochem. J. 174: 73–84

    Google Scholar 

  • Dorn E & Knackmuss H-J (1980) Chemical structure and biodegradability of halogenated aromatic compounds. J. Biochem. 174: 73–84

    Google Scholar 

  • Fetzner S, Muller R & Lingens F (1989) Degradation of 2-chlorobenzoate by Pseudomonas cepacia 2CBS. Biol. Chem. Hoppe-Seyler 370: 1173–1182

    Google Scholar 

  • Florence TM, Farrar YJ & Heights L (1971) Spectrophotometric determination of chloride at the parts-per-billion level by the mercury (II) thiocyanate method. Analytica Chimica Acta 54: 373–377

    Google Scholar 

  • Gaal A & Neujahr HY (1979) Metabolism of phenol and resorcinol in Trichosporon cutaneum. J. Bacteriol. 137: 13–21

    Google Scholar 

  • Gorlatov SN, Maltseva OV, Shevchenko BF & Golovleva LA (1989) Degradation of chlorophenols by the culture Rhodococcus erythropolis. Mikrobiologiya 58: 802–806 (in Russian)

    Google Scholar 

  • Golovleva LA, Pertsova RN, Maltseva OV & Zaborina OE (1991) Enzymatic degradation of polychlorinated phenol components of pulp and paper industry wastes and effluents. VTT Symposium 122 ‘Bioconversion of plant raw materials-biotechnology advancement’, Finnish-Soviet Seminar Mustio 14–16 March, 1990, Espoo: 70-81

  • Häggblom MM, Nohynek LJ & Salkinoja-Salonen NS (1988) Degradation and o-methylation of chlorinated phenolic compounds by Rhodococcus and Mycobacterium strains. Appl. Environ. Microbiol. 54: 3034–3052

    Google Scholar 

  • Kirchner JC (1978) Thin-layer chromatography, v. 1. Wiley & Sons, Inc., New York

    Google Scholar 

  • Knackmuss H-J & Hellwig M (1978) Utilization and cooxidation of chlorinated phenols by Pseudomonas sp. B13. Arch. Microbiol. 117: 1–7

    Google Scholar 

  • Lowry OH, Rosebrough HJ, Farr AL & Randall RJ (1951) Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193: 265–275

    Google Scholar 

  • Nakazawa T & Nakazawa A (1970) Pyrocatechase (Pseudomonas). In: Tabor H & Tabor CW (eds) Methods in Enzymology, vol. 17A (pp. 518–522). Academic Press, New York and London

    Google Scholar 

  • Nozaki M (1970) Metapyrocatechase. In: Tabor H & Tabor CW (eds) Methods in Enzymology. vol. 17A (pp. 522–526) Academic Press, New York and London

    Google Scholar 

  • Oae S, Kiritani R & Tagaki W (1966) The Oxygen Exchange Reaction of Phenol in Acidic Media. Bulletin of The Chemical Society of Japan 39: 1961–1967

    Google Scholar 

  • Saber D & Crawford RL (1985) Isolation and characterization of Flavobacterium strains that degrade pentachlorophenol. Appl. Environ. Microbiol. 50: 1512–1518

    Google Scholar 

  • Schlenk H & Hellerman J (1960) Esterification of fatty acids with diazomethane on a small scale. Anal. Chem. 32: 1412–1414

    Google Scholar 

  • Spain JC & Gibson DT (1988) Oxidation of substituted phenols by Pseudomonas putida F1 and Pseudomonas sp. strain JS6. Appl. Environ. Microbiol. 54: 1399–1404

    Google Scholar 

  • Steiert IG, Pignatello J & Crawford R (1987) Degradation of chlorinated phenols by a pentachlorophenol-degrading bacterium. Appl. Environ. Microbiol. 53: 907–910

    Google Scholar 

  • Sze JS-Y & Dagley S (1984) Properties of salicylate hydroxylase and hydrohyquinol 1,2-dioxygenase purified from Trichosporon cutaneum. J. Bacteriol. 159: 353–359

    Google Scholar 

  • Szokolay A & Madaric A (1969) Eindimensional dunnschicht Chromatographie chlorierter Insektizide auf Fertigplatten mit mehrfacher Entwicklung. J. Chromatogr. 42: 509–519

    Google Scholar 

  • Williams ST, Goodfellow M, Alderson G, Wellington EMH, Sneath PH & Sackin HJ (1983) Numerical classification of Streptomyces and related genera. J. General Microbiol. 129: 1743–1813

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Golovleva, L.A., Zaborina, O., Pertsova, R. et al. Degradation of polychlorinated phenols by Streptomyces rochei 303. Biodegradation 2, 201–208 (1991). https://doi.org/10.1007/BF00124494

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00124494

Key words

Navigation