Skip to main content
Log in

Isolation and initial characterization of bacteria growing on tetralin

  • Published:
Biodegradation Aims and scope Submit manuscript

Abstract

Eight strains of bacteria utilizing tetralin as sole source of carbon and energy have been obtained. Four strains have been selected from culture collections. The others were isolated from hydrocarbon-polluted areas. The newly isolated strains belong to the genera Acinetobacter, Arthrobacter and Moraxella. Most of the selected strains were able to grow on other aromatic hydrocarbons, but none of them grew on cyclohexane. Tetralin-utilizing organisms were difficult to isolate and cultivate, because tetralin was toxic to the cells at concentrations above 15 μl/l. Consequently tetralin was supplied either via the vapour phase or an organic solvent/water two-phase system was employed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

FC 40:

fluorocompound 40

DBP:

dibutylphthalate

DEP:

diethylphthalate

DOP:

dioctylphthalate

References

  • Anderson MS, Hall RA & Griffin M (1980) Microbial metabolism of alicyclic hydrocarbons: cyclohexane catabolism by a pure strain of Pseudomonas sp. J. Gen. Microbiol. 120: 89–94

    Google Scholar 

  • Baumann P, Doudoroff M & Stanier RY (1967) A study of the Moraxella group. I. Genus Moraxella and the Neisseria catarrhalis group. J. Bacteriol. 95: 58–73

    Google Scholar 

  • Baumann P (1968) A study of the Moraxella group. II. Oxidative-negative species (genus Acinetobacter). J. Bacteriol. 95: 1520–1541

    Google Scholar 

  • Beam HW & Perry JJ (1974) Microbial degradation of cycloparaffinic hydrocarbons via co-metabolism and commensalism. J. Gen. Microbiol. 82: 163–169

    Google Scholar 

  • de Bont JAM, Vorage MJAW, Hartmans S & van den Tweel WJJ (1986) Microbial degradation of 1,3-dichlorobenzene. Appl. Environ. Microbiol. 52: 677–680

    Google Scholar 

  • Coty VF (1967) Growing microorganisms on volatile hydrocarbons. U.S. Patent Appl. 3, 326, 770

  • Dagley S (1985) Microbial metabolism of aromatic compounds. In: Moo-Young M (Ed) Comprehensive Biotechnology, Vol. I, Bull AT, Dalton H (Eds) The Principles of Biotechnology: Scientific Fundamentals (pp 483–505). Pergamon Press, Oxford

    Google Scholar 

  • Furuhashi K, Shintani M & Takagi M (1986) Effects of solvents on the production of epoxides by Nocardia corallina B-276. Appl. Microbiol. Biotechnol. 23: 218–223

    Google Scholar 

  • Ganapathy K, Khanchandani KS & Bhattacharyya PK (1966) Microbiological transformations of terpenes: Part VII, Further studies on the mechanism of fungal oxygenation reactions with the aid of model substrates. Ind. J. Biochem. 3: 66–70

    Google Scholar 

  • Babets-Crützen AQH, Brink LES, van Ginkel CG, de Bont JAM & Tramper J (1984) Production of epoxides from gaseous alkenes by resting-cell suspensions and immobilized cells of alkene-utilizing bacteria. Appl. Microbiol. Biotechnol. 20: 245–250

    Google Scholar 

  • Hartmans S, van der Werf MJ & de Bont JAM (1990) Bacterial degradation of styrene involving a novel flavin adenine dinucleotide-dependent styrene monooxygenase. Appl. Environ. Microbiol. 56: 1347–1351

    Google Scholar 

  • Holland HL, Bergen EJ, Chenchaiah PC, Khan SH, Munoz B, Ninniss RW & Richards D (1987) Side chain hydroxylation of aromatic compounds by fungi I; products and stereochemistry. Can. J. Chem. 65: 502–507

    Google Scholar 

  • Inoue A & Horikoshi K (1989) A Pseudomonas thrives in high concentrations of toluene. Nature 338: 264–266

    Google Scholar 

  • Jamison VW, Raymond RL & Hudson JO (1971) Hydrocarbon co-oxidation by Nocardia corallina strain V 49. Dev. Ind. Microbiol. 12: 99–105

    Google Scholar 

  • Kappeler T & Wuhrmann K (1978) Microbial degradation of the water-soluble fraction of gas oil. II. Bioassays with pure strains. Water Res. 12: 335–342

    Google Scholar 

  • Laane C, Boeren S, Vos K & Veeger C (1987) Rules for optimization of biocatalysis in organic solvents. Biotechnol. Bioeng. 30: 81–87

    Google Scholar 

  • Ladd JN (1956) The oxidation of hydrocarbons by soil bacteria. I. Morphological and biochemical properties of a soil diphteroid utilizing hydrocarbons. Aust. J. Biol. Sci. 9: 92–104

    Google Scholar 

  • Perry JJ (1979) Microbial cooxidations involving hydrocarbons. Microbiol. Rev. 43: 59–72

    Google Scholar 

  • Rekker RF (1977) The hydrophobic fragmental constant: Its derivation and application, a means of characterizing membrane systems (Pharmacochemistry Library, eds. Nauta WTh, Rekker RF), Elsevier Scientific Publishing Company, Amsterdam-Oxford-New York

    Google Scholar 

  • Rezessy-Szabo J, Huijberts GNM & de Bont JAM (1987) Potential of organic solvents in cultivating microorganisms on toxic water-insoluble compounds. In: Laane C, Tramper J & Lilly MD (Eds) Biocatalysis in Organic Media (pp 295–302). Elsevier, Amsterdam

    Google Scholar 

  • Schraa G, Bethe BM, van Neerven ARW, van den Tweel WJJ, van der Wende E & Zehnder AJB (1987) Degradation of 1,2-dimethylbenzene by Corynebacterium strain C 125. A. van Leeuwenhoek 53: 159–170

    Google Scholar 

  • Schreiber A (1981) Zur bakteriellen Verwertbarkeit von Tetralin. Ph.D. Thesis Ruhr-Universität Bochum, 127 p

  • Schreiber AF & Winkler UK (1983) Transformation of tetralin by whole cells of Pseudomonas stutzeri AS 39. Eur. J. Appl. Microbiol. Biotechnol. 18: 6–10

    Google Scholar 

  • Seiler H (1983) Identification key for coryneform bacteria derived by numerical taxonomic studies. J. Gen. Microbiol. 129: 1433–1471

    Google Scholar 

  • Soli G & Bens EM (1972) Bacteria which attack petroleum hydrocarbons in a saline medium. Biotechnol. Bioeng. 14: 319–330

    Google Scholar 

  • Soli G (1973) Selective substrate utilization by marine hydrocarbo-noclastic bacteria. Biotechnol. Bioeng. 15: 285–297

    Google Scholar 

  • Stirling LA, Watkinson RJ & Higgins IJ (1977) Microbial metabolism of alicyclic hydrocarbons: isolation and properties of a cyclohexane-degrading bacterium. J. Gen. Microbiol. 99: 119–125

    Google Scholar 

  • Strawinski RJ & Stone RW (1940) The utilization of hydrocarbons by bacteria. J. Bacteriol. 40: 461–462

    Google Scholar 

  • Trower MK, Buckland RM, Higgins R & Griffin M (1985) Isolation and characterization of a cyclohexane-metabolizing Xanthobacter sp. Appl. Environ. Microbiol. 49: 1282–1289

    Google Scholar 

  • Trudgill PW (1984) Microbial degradation of the alicyclic ring. In: Gibson DT (Ed) Microbial Degradation of Organic Compounds (pp 131–180). Marcel Dekker, New York

    Google Scholar 

  • Tsuchii A, Suzuki T & Takahara Y (1977) Microbial degradation of styrene oligomer. Agric. Biol. Chem. 41: 2417–2421

    Google Scholar 

  • van den Tweel WJJ, Smits JP & de Bont JAM (1986a) Microbial metabolism of D- and L-phenylglycine by Pseudomonas putida LW-4. Arch. Microbiol. 144: 169–174

    Google Scholar 

  • van den Tweel WJJ, Janssens RJJ & de Bont JAM (1986b) Degradation of 4-hydroxyphenylacetate by Xanthobacter 124 X. A. van Leeuwenhoek 52: 309–318

    Google Scholar 

  • van den Tweel WJJ, Vorage MJAW, Marsman EH, Koppejan J, Tramper J & de Bont JAM (1988) Continuous production of cis-1,2-dihydroxycyclohexa-3,5-diene (cis-benzeneglycol) from benzene by a mutant of a benzene-degrading Pseudomonas sp. Enz. Microbiol. Technol. 10: 134–142

    Google Scholar 

  • Vishniac W & Santer M (1957) The thiobacilli. Bacteriol. Rev. 21: 195–213

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sikkema, J., de Bont, J.A.M. Isolation and initial characterization of bacteria growing on tetralin. Biodegradation 2, 15–23 (1991). https://doi.org/10.1007/BF00122421

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00122421

Key words

Navigation