Skip to main content
Log in

The structure of the stably stratified internal boundary layer in offshore flow over the sea

  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

Observations obtained mainly from a research aircraft are presented of the mean and turbulent structure of the stably stratified internal boundary layer (IBL) over the sea formed by warm air advection from land to sea. The potential temperature and humidity fields reveal the vertical extent of the IBL, for fetches out to several hundred of kilometres, geostrophic winds of 20–25 m s−1, and potential temperature differences between undisturbed continental air and the sea surface of 7 to 17 K. The dependence of IBL depth on these external parameters is discussed in the context of the numerical results of Garratt (1987), and some discrepancies are noted.

Wind observations show the development of a low-level wind maximum (wind component normal to the coast) and rotation of the wind to smaller cross-isobar flow angles. Potential temperature (θ) profiles within the IBL reveal quite a different structure to that found in the nocturnal boundary layer (NBL) over land. Over the sea, θ profiles have large positive curvature with vertical gradients increasing monotonically with height; this reflects the dominance of turbulent cooling within the layer. The behaviour is consistent with known behaviour in the NBL over land where curvature becomes negative (vertical gradients of θ decreasing with height) as radiative cooling becomes dominant.

Turbulent properties are discussed in terms of non-dimensional quantities, normalised by the surface friction velocity, as functions of normalised height using the IBL depth. Vertical profiles of these and the normalised wavelength of the spectral maximum agree well with known results for the stable boundary layer over land (Caughey et al., 1979).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • André, J. C. and Mahrt, L.: 1982, ‘The Nocturnal Surface Inversion and Influence of Clear Air Radiative Cooling’, J. Atmos. Sci. 39, 864–878.

    Google Scholar 

  • Caughey, S. J., Wyngaard, J. C., and Kaimal, J. C.: 1979, ‘Turbulence in the Evolving Stable Boundary Layer’, J. Atmos. Sci. 36, 1041–1052.

    Google Scholar 

  • Friehe, C. A., LaRue, J. C., Champagne, F. H., Gibson, C. H., and Dreyer, G. F.: 1975, ‘Effects of Temperature and Humidity Fluctuations on the Optical Refractive Index in the Marine Boundary Layer’, J. Optical Soc. Amer. 65, 1502–1511.

    Google Scholar 

  • Garratt, J. R.: 1977, ‘Review of Drag Coefficients over Oceans and Continents’, Mon. Wea. Rev. 105, 915–929.

    Google Scholar 

  • Garratt, J. R.: 1982, ‘Observations in the Nocturnal Boundary Layer’, Boundary-Layer Meteorol. 22, 21–48.

    Google Scholar 

  • Garratt, J. R.: 1987, ‘The Stably Stratified Internal Boundary Layer for Steady and Diurnally Varying Offshore Flow’, Boundary-Layer Meteorol. 39, 369–394.

    Google Scholar 

  • Garratt, J. R. and Brost, R. A.: 1981, ‘Radiative Cooling Effects within and above the Nocturnal Boundary Layer’, J. Atmos. Sci. 38, 2730–2746.

    Google Scholar 

  • Hsu, S. A.: 1983, ‘On the Growth of a Thermally Modified Boundary Layer by Advection of Warm Air over a Cooler Sea’, J. Geophys. Res. 88, 771–774.

    Google Scholar 

  • Johnson, H. D., Lenschow, D. H., and Danninger, K.: 1978, ‘A New Fixed Vane for Measuring Air Motion. Preprints, Fourth Symposium on Meteorological Observations and Instrumentation’, Amer. Meteorol. Soc. Boston, Mass., U.S.A., pp. 467–470.

    Google Scholar 

  • Mulhearn, P. J.: 1981, ‘On the Formation of a Stably Stratified Internal Boundary Layer by Advection of Warm Air over a Cooler Sea’, Boundary-Layer Meteorol 21, 247–254.

    Google Scholar 

  • Pasquill, F. and Smith, F. B.: 1983, Atmospheric Diffusion, Third Edition, J. Wiley and Sons, New York, 437 pp.

    Google Scholar 

  • Raynor, G. S., Sethuraman, S., and Brown, R. M.: 1979, ‘Formation and Characteristics of Coastal Internal Boundary Layers during Onshore Flows’, Boundary-Layer Meteorol. 16, 487–514.

    Google Scholar 

  • Ryan, B. F., Wilson, K. J., Garratt, J. R., and Smith, R. K.: 1985, ‘Cold Fronts Research Programme: Progress, Future Plans and Research Directions’, Bull. Amer. Meteorol. Soc. 66, 1116–1122.

    Google Scholar 

  • Venkatram, A.: 1977, ‘A Model of Internal Boundary-layer Development’, Boundary-Layer Meteorol. 11, 419–437.

    Google Scholar 

  • Venkatram, A.: 1986, ‘An Examination of Methods to Estimate the Height of the Coastal Internal Boundary Layer’, Boundary-Layer Meteorol. 36, 149–156.

    Google Scholar 

  • Wyngaard, J. C.: 1973, ‘Chapter 3 in Workshop on Micrometeorology’, D. A. Haugen (ed.), Amer. Meteorol. Soc., 392 pp.

  • Yamada, T.: 1979, ‘Prediction of the Nocturnal Surface Inversion Height’, J. Appl. Meteorol. 18, 526–531.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Garratt, J.R., Ryan, B.F. The structure of the stably stratified internal boundary layer in offshore flow over the sea. Boundary-Layer Meteorol 47, 17–40 (1989). https://doi.org/10.1007/BF00122320

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00122320

Keywords

Navigation