Skip to main content
Log in

Possible coexistence of superconductivity and magnetism in layered compounds

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

The possibility of a coexistent superconducting and magnetic phase in layered transition metal dichalcogenides of the type MX 2 A x is investigated (M =transition metal; X = S, Se; A = magnetic ion; x ≥ 0.25). Describing such systems with a model in which a highly anisotropic electron gas interacts with a quasi-two-dimensional Heisenberg magnet, we find the following conditions for coexistence: (1) The coupling between adjacent layers of ferromagnetically ordered magnetic ions needs to be antiferromagnetic (〈S z〉 = 0) in order to have no pair-breaking internal fields. (2) The exchange interaction between conduction electrons and magnetic ions must be very small (≲ 0.003 eV), since otherwise, due to the high concentration of localized magnetic moments, spin-flip scattering processes and spin fluctuations would destroy superconductivity. The theoretical prediction for the persistence of superconductivity up to concentrations of x≈ 0.25 of magnetic ions is compared with recent experiments on Eu-intercalated TaS 2 and NbS 2 and related compounds showing a tendency for ferromagnetically ordered layers of Eu impurities and antiferromagnetic coupling between neighboring layers but no superconductivity for x exceeding a few percent. Reasons for the quick disappearance of superconductivity in these systems and criteria for possible observation of “high-magnetic-impurity-concentration superconductivity” in other layered compounds are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. V. S. Rao, M. W. Shafer, and L. J. Tao, Mat. Res. Bull. 8, 1231 (1973).

    Google Scholar 

  2. M. W. Shafer, G. V. S. Rao, and L. J. Tao, in Proc. Int. Conf. Magnetism, ICM-73 (Moscow, 1974), Vol. II, p. 283.

  3. T. Sambongi, J. Low Temp. Phys. 18, 139 (1975).

    Google Scholar 

  4. J. C. Tsang, M. W. Shafer, and B. L. Crowder, Phys. Rev. B 11, 155 (1975).

    Google Scholar 

  5. J. M. Chen and C. S. Wang, Bull. Amer. Phys. Soc. 19, 485 (1974).

    Google Scholar 

  6. R. C. Morris and R. V. Coleman, Phys. Rev. B 7, 991 (1973).

    Google Scholar 

  7. R. A. Klemm, M. R. Beasley, and A. Luther, J. Low Temp. Phys. 16, 607 (1974).

    Google Scholar 

  8. K. Aoi, W. Dieterich, and P. Fulde, Z. Physik 267, 223 (1974).

    Google Scholar 

  9. J. M. Voorhoeve-van den Berg and R. C. Sherwood, J. Phys. Chem. Solids 32, 167 (1971).

    Google Scholar 

  10. J. J. Hauser, M. Robbins, and F. J. DiSalvo, Phys. Rev. B 8, 1038 (1973).

    Google Scholar 

  11. J. M. Voorhoeve-van den Berg and M. Robbins, J. Solid State Chem. 1, 134 (1970).

    Google Scholar 

  12. L. F. Mattheis, Phys. Rev. B 8, 3719 (1973).

    Google Scholar 

  13. C. Y. Fong and M. L. Cohen, Phys. Rev. Lett. 32, 720 (1974).

    Google Scholar 

  14. W. E. Lawrence and S. Doniach, in Proc. Twelfth Int. Conf. Low Temp. Phys., E. Kanda, ed. (Academic Press of Japan, Kyoto, 1971), p. 361.

    Google Scholar 

  15. T. Tsuzuki, J. Low Temp. Phys. 9, 525 (1972).

    Google Scholar 

  16. U. Ambegaokar and A. Griffin, Phys. Rev. 137A, 1151 (1965).

    Google Scholar 

  17. K. Maki, in Superconductivity, Vol. 2, R. D. Parks, ed. (Marcel Dekker, New York, 1969), p. 1035.

    Google Scholar 

  18. J. Keller and R. Benda, J. Low Temp. Phys. 2, 141 (1970).

    Google Scholar 

  19. T. Kusakabe, Progr. Theor. Phys. 43, 907 (1970).

    Google Scholar 

  20. V. A. Moskalenko and L. Z. Kon, Sov. Phys. JETP 23, 479 (1966).

    Google Scholar 

  21. P. Will and M. Brusberg, J. Low Temp. Phys. 18, 169 (1975).

    Google Scholar 

  22. P. Entel and W. Klose, Z. Physik B 21, 363 (1975).

    Google Scholar 

  23. P. Fulde and K. Maki, Phys. Rev. 141, 275 (1966).

    Google Scholar 

  24. S. V. Tyablikov, Ukrain. Math. Zh. 11, 287 (1959).

    Google Scholar 

  25. W. Marshall and R. D. Lowde, Rep. Progr. Phys. 31, 705 (1968).

    Google Scholar 

  26. D. Furmann and M. Blume, Phys. Rev. B 10, 2068 (1974).

    Google Scholar 

  27. P. Entel and W. Klose, J. Low Temp. Phys. 17, 529 (1974).

    Google Scholar 

  28. E. A. Antonova, S. A. Medvedev, and I. Yu. Shebalin, Sov. Phys. JETP 30, 181 (1970).

    Google Scholar 

  29. E. I. Katz, Sov. Phys. JETP 31, 707 (1970).

    Google Scholar 

  30. J. M. Voorhoeve-van den Berg, J. Less-Common Metals 26, 399 (1972).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Entel, P., Crisan, M., Bongi, G. et al. Possible coexistence of superconductivity and magnetism in layered compounds. J Low Temp Phys 23, 157–176 (1976). https://doi.org/10.1007/BF00117249

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00117249

Keywords

Navigation