Skip to main content
Log in

Transport phenomena in He3-He4 mixtures near the tricritical point

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

We have made extensive measurements on transport phenomena in He3-He4 mixtures near the tricritical point and along the superfluid transition line at saturated vapor pressure. The He3 mole fraction X ranged from 0.51 to 0.72 and the temperature from 0.8 to 1.5 K. Our measurements were made under steady state conditions using a cell where we measured the vertical He3 concentration gradient ▽X induced by a temperature gradient ▽T produced by a vertical heat flux. The cell included two superposed capacitors and ▽X was determined by means of the dielectric constant method. In this paper, we present a comprehensive report on our results for the thermal diffusion ratio k T and the thermal conductivity κ both in the normal fluid and in the superfluid. In the tricritical region, k T was found to diverge strongly as the tricritical point was approached; no singularity in κ was found. This behavior is consistent with theoretical predictions. In the region near the lambda line, κ remains finite, as expected, but k T appears to have a stronger singularity than predicted by theory. The analysis of our experiment in the normal fluid for mixtures with X>0.51 was complicated by superfluid film flow along the walls of the sample cell. We describe this effect and analyze it with Khalatnikov's theory of superfluidity. However, for the mixture X = 0.51, where there is no such film, the behavior of k T is consistent with predictions. The k T data for the mixtures 0.6 < X < 0.7 could be cast into a tricritical scaling representation, similar to that for the concentration susceptibility. In the superfluid phase we test, for the first time and with fair success, a relation by Khalatnikov between ▽X/▽T and static properties, measured in different experiments. Finally, we discuss the relaxation times that characterize the establishment of steady state conditions. From these data it is possible, under favorable circumstances, to obtain the mass diffusivity D.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Ahlers, in the Physics of Liquid and Solid Helium, Part I, K. H. Bennemann and J. B. Ketterson, eds. (Wiley, New York, 1976).

    Google Scholar 

  2. G. Ahlers, Phys. Rev. Lett. 24, 1333 (1970).

    Google Scholar 

  3. K. Kawasaki, and J. D. Gunton, Phys. Rev. Lett. 29, 1661 (1972).

    Google Scholar 

  4. M. K. Grover and J. Swift, J. Low. Temp. Phys. 11, 751 (1973).

    Google Scholar 

  5. M. Papoular, J. Low Temp. Phys. 24, 105 (1976).

    Google Scholar 

  6. E. D. Siggia and D. R. Nelson, Phys. Rev. B 15, 1427 (1977).

    Google Scholar 

  7. P. Lucas and A. Tyler, J. Low Temp. Phys. 27, 281 (1977).

    Google Scholar 

  8. D. Roe, G. Ruppeiner, and H. Meyer, J. Low Temp. Phys. 27, 747 (1977).

    Google Scholar 

  9. D. Roe and H. Meyer, J. Low Temp. Phys. 28, 349 (1977).

    Google Scholar 

  10. M. Tanaka and A. Ikushima, Phys. Lett. 64A, 402 (1978); J. Low Temp. Phys. 35, 9 (1979).

    Google Scholar 

  11. H. Meyer, G. Ruppeiner, and M. Ryschkewitsch, in Dynamical Critical Phenomena and Related Topics, C. P. Enz, ed. (Springer-Verlag, Berlin, 1979), p. 171.

    Google Scholar 

  12. M. Ryschkewitsch, G. Ruppeiner, and H. Meyer, J. Phys. (Paris) 39, C6–186 (1978).

    Google Scholar 

  13. G. Ruppeiner and H. Meyer, Phys. Lett. 70A, 433 (1979).

    Google Scholar 

  14. J. R. G. Keyston and J. P. Laheurte, Phys. Lett. 24A, 132 (1967).

    Google Scholar 

  15. J. R. G. Keyston and J. P. Laheurte, in Proc. 11th Int. Conf. Low Temp. Phys., J. F. Allen, D. M. Finlayson, and D. M. M. McCall, eds. (Univ. of St. Andrews, St. Andrews, Scotland, 1968), p. 665.

    Google Scholar 

  16. J. P. Laheurte, Phys. Rev. A 6, 2452 (1972).

    Google Scholar 

  17. C. A. Gearhart and W. Zimmermann, Jr., Phys. Lett. 48A, 49 (1974).

    Google Scholar 

  18. I. M. Khalatnikov, Introduction to the Theory of Superfluidity (Benjamin, New York, 1965), Section 24.

    Google Scholar 

  19. L. D. Landau and I. M. Lifshitz, Fluid Mechanics (Pergamon Press, London, 1959), Chapter VI.

    Google Scholar 

  20. R. Behringer, private communication.

  21. A. Griffin, Can. J. Phys. 47, 429 (1969).

    Google Scholar 

  22. R. B. Griffiths and J. C. Wheeler, Phys. Rev. A 2, 1047 (1970).

    Google Scholar 

  23. G. Goellner, R. P. Behringer, and H. Meyer, J. Low Temp. Phys. 13, 113 (1973).

    Google Scholar 

  24. C. A. Gearhart, Jr. and W. Zimmermann, Jr., Phys. Rev. B 19, 2677 (1979).

    Google Scholar 

  25. M. Ryschkewitsch, T. Doiron, M. Chan, and H. Meyer, Phys. Lett. 64A, 219 (1977).

    Google Scholar 

  26. M. Ryschkewitsch and H. Meyer, J. Low Temp. Phys. 35, 103 (1979).

    Google Scholar 

  27. G. Ruppeiner, Ph.D. thesis, Duke University (1980) (in preparation).

  28. H. A. Kierstead, J. Low Temp. Phys. 24, 497 (1976).

    Google Scholar 

  29. J. T. Folinsbee and A. C. Anderson, J. Low Temp. Phys. 17, 409 (1974).

    Google Scholar 

  30. C. L. Reynolds, Jr. and A. C. Anderson, Phys. Rev.B 14, 4114 (1976).

    Google Scholar 

  31. K. Wey Yen, Zh. Eksp. Teor. Fiz. 42, 921 (1962) [Sou. Phys.—JETP 15, 635 (1962)].

    Google Scholar 

  32. D. M. Lee and H. A. Fairbank, Phys. Rev. 116, 1359 (1959).

    Google Scholar 

  33. G. Ahlers and D. Greywall, Phys. Rev. Lett. 29, 849 (1972); in Low Temperature Physics—LT 13 (Plenum Press, New York, 1974), Vol. 1, p. 586.

    Google Scholar 

  34. P. Leiderer, D. R. Watts, and W. W. Webb, Phys. Rev. Lett. 33, 483 (1974).

    Google Scholar 

  35. E. K. Riedel, H. Meyer, and R. P. Behringer, J. Low Temp. Phys. 22, 369 (1976).

    Google Scholar 

  36. H. A. Kierstead, J. Low Temp. Phys. 35, 25 (1979).

    Google Scholar 

  37. J. P. Romagnan, J. P. Laheurte, J. C. Noiray, and W. F. Saam, J. Low Temp. Phys. 30, 425 (1978).

    Google Scholar 

  38. S. T. Islander and W. Zimmermann, Jr., Phys. Rev. A 7, 188 (1973).

    Google Scholar 

  39. P. Leiderer, D. R. Nelson, D. R. Watts, and W. W. Webb, Phys. Rev. Lett. 34, 1080 (1975).

    Google Scholar 

  40. R. P. Behringer and H. Meyer (to be published).

  41. G. Ahlers and F. Pobell, Phys. Rev. Lett. 32, 144 (1974).

    Google Scholar 

  42. A. C. Anderson, J. I. Connolly, O. E. Vilches, and J. C. Wheatley, Phys. Rev. 147, 86 (1966).

    Google Scholar 

  43. J. F. Kerrisk and W. E. Keller, Phys. Rev. 177, 341 (1969).

    Google Scholar 

  44. J. Wilks, Liquid and Solid Helium (Oxford University Press, 1967), Appendix A9.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by grant DMR77-20827 from the National Science Foundation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ruppeiner, G., Ryschkewitsch, M. & Meyer, H. Transport phenomena in He3-He4 mixtures near the tricritical point. J Low Temp Phys 41, 179–216 (1980). https://doi.org/10.1007/BF00117237

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00117237

Keywords

Navigation