Skip to main content
Log in

Importance of myo-inositol, calcium, and ammonium for the viability and division of tomato (Lycopersicon esculentum) protoplasts

  • Published:
Plant Cell, Tissue and Organ Culture Aims and scope Submit manuscript

Abstract

Plants from four cultivars of Lycopersicon esculentum were grown under different conditions, in controlled environment chambers. Low light intensity, long photoperiod (16 h), 25° C/17°C temperature alternance (day/night) were found to be the most convenient conditions for obtaining viable protoplasts. The use of myo-inositol as an osmoticum in the digestion medium and the adjustment of the pH to 6.5, instead of the usual 5.8, for this medium increased the yield of viable protoplasts and enhanced their stability. Under these conditions neither pretreatment (dark and cold treatments), nor preplasmolysis of leaf tissues, were required before protoplast isolation. The concentrations of ammonium nitrate, calcium chloride, myo-inositol, and sucrose were found to be critical for the success of protoplast culture. A medium containing 5 mM ammonium nitrate, 40 mM calcium chloride, 10 mg l-1 adenine sulfate, 0.5% myo-inositol and 6% sucrose gave sustained protoplast divisions. Under these conditions, plating efficiency ranged from 5% for the cultivar Lukulus to 15% for the cultivar Golden Sunrise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

BA:

benzylaminopurine

CaCl2 :

calcium chloride, 2,4,-D-2,4-dichlorophenoxyacetic acid

EDTA:

ethylene diamine tetraacetic acid

KCl:

potassium chloride

MES-2-N:

morpholino ethane sulfonic acid

MgCl2 :

magnesium chloride

NH4NO3 :

ammonium nitrate

NAA:

naphthalene acetic acid, p-protoplasts

References

  1. Rick CM (1978) The tomato. Sci. Am. 239: 76–87

    Google Scholar 

  2. Rick CM (1982) The potential of exotic germplasm for the tomato improvement. In: Vasil I, Scowcroft W & Frey K (Eds) Plant Improvement and Somatic Cells Genetics (pp 1–28). Academic Press, London New York

    Google Scholar 

  3. Shahin EA (1985) Totipotency of tomato protoplasts. Theor. Appl. Genet. 69: 235–240

    Google Scholar 

  4. Niedz RP, Rutter SM, Handley LW & Sink KC (1985) Plant regeneration from leaf protoplasts of six tomato cultivars. Plant Sci. 39: 199–204

    Google Scholar 

  5. Tan M, Rietveld F, van Marrewijk GA & Kool AJ (1987) Regeneration of leaf mesophyll protoplasts of tomato cultivars (L. esculentum): factors important for efficient protoplast culture and plant regeneration. Plant Cell Rep. 6: 172–175

    Google Scholar 

  6. Sakata Y, Nishio T & Takayanagi K (1987) Plant regeneration from mesophyll protoplasts of tomato cv. Ponderosa. J. Japan. Soc. Hortic. Sci. 56,3: 334–338

    Google Scholar 

  7. Coic EC & Lesaint C (1971) Comment assurer une bonne nutriion en eau et en ions minéraux en horticulture. Hortic. Fr. 8: 11–14

    Google Scholar 

  8. Chupeau MC, Bellini C, Guerche P, Maisonneuve B, Vastra G & Chupeau Y (1989) Transgenic plants of lettuce (Lactuca sativa) through direct gene transformation after electroporation of protoplasts. Bio/Technology 7: 503–507

    Google Scholar 

  9. Frearson EM, Power JB & Cocking EC (1973) The isolation, culture and regeneration of Petunia leaf protoplasts. Dev. Biol. 33: 130–137

    Google Scholar 

  10. Cassells AC & Barlass M (1976) Environmental changes in the cell walls of tomato leaves in relation to cell and protoplast release. Physiol. Plant. 37: 239–246

    Google Scholar 

  11. Muller JF, Missonier C & Caboche M (1983) Low density growth of cells derived from Nicotiana and Petunia protoplasts: Influence of the source of protoplasts and comparison of the growth-promoting activity of various auxins. Physiol. Plant. 57: 35–41

    Google Scholar 

  12. Saleem M & Cutler AJ (1987) Stabilizing corn leaf protoplasts with n-propyl gallate. J. Plant. Physiol. 128: 479–484

    Google Scholar 

  13. Cassells AC & Barlass M (1978) A method for the isolation of stable mesophyll protoplasts from tomato leaves throughout the year under standard conditions. Physiol. Plant. 42: 236–242

    Google Scholar 

  14. Zapata FJ, Sink KC & Cocking EC (1981) Callus formation from leaf mesophyll protoplasts of three Lycopersicon species: L. esculentum cv. Walter, L. pimpinellifolium and L. hirsutum, F. glabratum. Plant Sci. Lett. 23: 41–46

    Google Scholar 

  15. Chupeau Y, Bourgin JP, Missonier C, Dorin N & Morel G (1974) Préparation et culture de protoplastes de divers Nicotiana. CR. Acad. Sci. Paris. Ser. D 278: 1565–1568

    Google Scholar 

  16. Hassanpour-Estahbani A & Demarly Y (1984) Plant regeneration from protoplasts of Solanum pennellii: effect of photoperiod applied to donor plants. J. Plant Physiol 121: 171–174

    Google Scholar 

  17. Tabaeizedeh Z, Bunisset-Bergounioux C & Perennes C (1984) Environmental growth conditions of protoplast source plants: effect on subsequent protoplast division in two tomato species. Physiol. 22,2: 223–229

    Google Scholar 

  18. Bellini C, Chupeau MC, Guerche P, Vastra G & Chupeau Y (1989) Transformation of Lycopersicon peruvianum and Lycopersicon esculentum mesophyll protoplasts by electroporation. Plant Sci. 65, 1: 63–76

    Google Scholar 

  19. Haberlach GT, Cohen BA, Reichert NA, Baer MA, Towill LE & Helgeson JP (1985) Isolation, culture and regeneration of protoplasts from potato and several related Solanum species. Plant Sci. Lett. 39: 67–74

    Google Scholar 

  20. Ettlinger C & Lehle L (1987) Auxin induces rapid changes in phosphatidylinositol metabolites. Nature 331: 176–178

    Google Scholar 

  21. O'Connel MA & Hanson MR (1985) Somatic hybrization between Lycopersicon esculentum and Lycopersicon pennellii. Theor. Appl. Genet. 70: 1–12

    Google Scholar 

  22. Masson J, Lecerf M, Rousselle P, Perennec P & Pelletier G (1987) Plant regeneration from protoplasts of diploid potato derived from crosses of Solanum tuberosum with wild Solanum species. Plant Sci. 53: 167–176

    Google Scholar 

  23. Upadayah MD (1975) Isolation and culture of mesophyll protoplasts of potato Solanum tuberosum L. Potato Res. 18: 438

    Google Scholar 

  24. Meyer Y & Abel WO (1975) Budding and clivage division of tobacco protoplasts in relation to pseudo-wall and wall formation. Planta 125: 1–13

    Google Scholar 

  25. Trewavas AJ (1985) Growth substances, calcium and the regulation of cell division. In Bryant & Francis (Eds) The Cell Division Cycle in Plants (pp 133–156). Cambridge University Press, Cambridge

    Google Scholar 

  26. Tanimoto S & Harada H (1986) Involvement of calcium in adventitious bud initiation in Torenia stem segments. Plant Cell Physiol. 27, 1: 1–10

    Google Scholar 

  27. Das R, Bagga S & Sopory SK (1987) Involvement of phosphoinositides, calmoduline and glyoxalase-I in cell proliferation in callus cultures of Amaranthus paniculatus. Plant Sci. 53: 45–51

    Google Scholar 

  28. Muhlbach HP (1980) Different regeneration potentials of mesophyll protoplasts from cultivated and wild species of tomato. Planta 148: 89–96

    Google Scholar 

  29. Zelcer A, Soferman O & Izhar S (1984) An in vitro screening for tomato genotypes exhibiting efficient shoot regeneration. J. Plant Physiol. 115: 211–215

    Google Scholar 

  30. Tan M, Coliyn-Hooymans CM, Linhout WH & Kool AJ (1987) A comparison of shoot regeneration from protoplasts and leaf discs from different genotypes of the cultivated tomato. Theor. Appl. Genet. 75: 105–108

    Google Scholar 

  31. Frankenberger EA, Hasegawa PM & Tigchelaar EC (1981) Diallel analysis of shoot-forming capacity among selected tomato genotypes. Z. Pflanzenphysiol. 102: 233–242

    Google Scholar 

  32. Koornneef M, Hanart CJ & Martinelli L (1987) A genetic analysis of cell culture traits in tomato. Theor. Appl. Genet. 74: 633–641

    Google Scholar 

  33. Koorneef M, Hanhart C, Jongsma M, Toma I, Weide R, Zabel P & Hille J (1986) Breeding of a tomato genotype readily accessible to genetic manipulation. Plant Sci. 45: 201–208

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bellini, C., Chupeau, MC., Gervais, M. et al. Importance of myo-inositol, calcium, and ammonium for the viability and division of tomato (Lycopersicon esculentum) protoplasts. Plant Cell Tiss Organ Cult 23, 27–37 (1990). https://doi.org/10.1007/BF00116086

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00116086

Key words

Navigation