Skip to main content
Log in

Interactions between somatic mutations and plant development

  • Published:
Vegetatio Aims and scope Submit manuscript

Abstract

It is hypothesised that somatic mutations are an important source of genetic variance within long-lived plant individuals, and that shoot ontogeny and sexual reproduction are two processes that decrease the mutation load of the shoot population and the offspring. This paper focuses on the way in which sympodial and monopodial shoot branching may influence intra-plant genetic variation and on the role of physiological integration between plant modules for the phenotypic expression of this variation. I also discuss some possible consequences of the interaction of somatic mutations and shoot ontogeny for the study of seedling recruitment and phenotypic plasticity in plant populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Antolin M.F. & Strobeck C. 1985. The population genetics of somatic mutations in plants. Am. Nat. 126: 52–62.

    Google Scholar 

  • Benner B.L. & Watson M.A. 1989. Developmental ecology of mayapple: seasonal patterns of resource distribution in sexual and vegetative rhizome systems. Funct. Ecol. 3: 539–547.

    Google Scholar 

  • Bierzychudek P. 1982. Life histories and demography of shade-tolerant temperate forest herbs: a review. New Phytol. 90: 757–776.

    Google Scholar 

  • Buss L.W. 1987. The evolution of individuality. Princeton University Press, Princeton, USA.

    Google Scholar 

  • Edwards P.B., Wanjura W.J. & Brown W.V. 1990. Mosaic resistance in plants. Nature 347: 434.

    Google Scholar 

  • Eriksson O. & Ehrlén J. 1992. Seed and microsite limitation of recruitment in plant populations. Oecologia 91: 360–364.

    Google Scholar 

  • Geber M.A. 1989. Interplay of morphology and development on size inequality: a Polygonum greenhouse study. Ecol. Monogr. 59: 267–288.

    Google Scholar 

  • Gill D.E. 1986. Individual plants as genetic mosaics: ecological organisms versus evolutionary individuals. pp. 321–343. In: Crawley M.J. (ed) Plant Ecology. Blackwell Scientific Publications, Oxford, UK.

    Google Scholar 

  • Hartmannn H.D. & Kester D.E. 1983. Plant propagation. Principles and practices, 4th ed. Prentice-Hall, Inc., Englewood Cliffs, New Jersey, USA.

    Google Scholar 

  • Hohn B. & Dennis E.S. (eds.) 1985. Genetic flux in plants. Springer Verlag, Wien, Austria.

    Google Scholar 

  • King L.M. & Schaal B.A. 1990. Genotypic variation within asexual lineages of Taraxacum officinale. Proc. Nat. Acad. Sci. USA 87: 998–1002.

    Google Scholar 

  • Klekowski E.J.Jr. 1988. Mutation, Developmental Selection, and Plant Evolution. Columbia University Press, New York, USA.

    Google Scholar 

  • Klekowski E.J.Jr. & Kazarinova-Fukshansky N. 1984a. Shoot apical meristems and mutation: Fixation of selective neutral cell genotypes. Am. J. Bot. 71: 22–27.

    Google Scholar 

  • Klekowski E.J.Jr. & Kazarinova-Fukshansky N. 1984b. Shoot apical meristems and mutation: selective loss of disadvantageous cell genotypes. Am. J. Bot. 71: 28–34.

    Google Scholar 

  • Klekowski E.J.Jr., Kazarinova-Fukshansky N. & Fukshansky L. 1989. Patterns of plant ontogeny that may influence genomic stasis. Am. J. Bot. 76: 185–195.

    Google Scholar 

  • Körner C. & Pelaez Menendez-Riedl S. 1990. The significance of developmental aspects in plant growth analysis. pp. 141–157. In: Lambers H., Cambridge M.L., Konigs H. & Pons T.L. (eds.) Causes and consequences of variation in growth rate and productivity of higher plants. SPB Academic Publishing, The Hague, the Netherlands.

    Google Scholar 

  • Levins R. & Lewontin R. 1985. The Dialectical Biologist, p 106. Harvard University Press, Cambridge, UK.

    Google Scholar 

  • Lewontin R.C. 1970. The units of selection. Annu Rev. Ecol. Syst. 1: 1–18.

    Google Scholar 

  • Lyman J.C. & Ellstrand N.C. 1984. Clonal diversity in Taraxacum officinale (Compositae), an apomict. Heredity 53: 1–10.

    Google Scholar 

  • Macdonald S.E. & Chinappa C.C. 1989. Population differentiation for phenotypic plasticity in the Stellaria longipes complex. Am. J. Bot. 76: 1627–1637.

    Google Scholar 

  • Marshall C. 1990. Source-sink relations of interconnected ramets. pp. 23–41. In: vanGroenendael J. & deKroon H. (eds.) Clonal Growth in Plants. Regulation and Function. SPB Academic Publishing, the Hague, the Netherlands.

    Google Scholar 

  • Mayr E. 1982. The growth of biological thought. Harvard University Press, Cambridge, UK.

    Google Scholar 

  • Maze J., Banerjee S., El-Kassaby Y.A. & Bohm L.R. 1992. A quantitative genetic analysis of morphological integration in Douglas fir. Int. J. Plant Sci. 153: 333–340.

    Google Scholar 

  • Novoplansky A. 1991. Developmental responses of Portulaca seedlings to conflicting spectral signals. Oecologia 88: 138–140.

    Google Scholar 

  • Perttula U. 1941. Untersuchungen über die Generative und Vegetative Vermerung der Blütenpflanzen in der Wald-, Hain-Wiesen und Hainfelsenvegetationen. Ann. Acad. Sci. Fenn. Ser A 58 (1), pp 1–388.

    Google Scholar 

  • Pedersen, B. 1993. Theoretical studies of life history evolution in modular and clonal organisms. PhD thesis. University of Trondheim, Norway.

    Google Scholar 

  • Popham R.A. 1951. Principal types of vegetative shoot apex organization in vascular plants. Ohio J. Sci. 51: 249–270.

    Google Scholar 

  • Salomonson A, Ohlson M. & Ericson L. 1994. Meristem activity and biomass production as response mechanisms in two forest herbs. Oecologia 100: 29–37.

    Google Scholar 

  • Shaw A.J. 1990. Intraclonal variation in morphology, growth rate and copper tolerance in the moss Funaria hygrometrica. Evolution 44: 441–447.

    Google Scholar 

  • Slatkin M. 1984. Somatic mutations as an evolutionary force. pp. 19–30. In: Greenwood P.J., Harvey P.H. & Slatkin M. (eds.) Evolution. Essays in honour of John Maynard Smith. Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • Steeves T.A. & Sussex I.M. 1989. Patterns in plant development. 2nd ed. Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • Tuomi J. & Vuorisalo T. 1989. Hierarchical selection in modular organisms. Trends Ecol. Evol. 4: 209–213.

    Google Scholar 

  • Vasseur L., Aarssen L.W. & Bennett T. 1993. Allozymic variation in local apomictic populations of Lemna minor (Lemnaceae). Am. J. Bot. 80: 974–979.

    Google Scholar 

  • Walbot V. & Cullis C.A. 1985. Rapid genomic change in higher plants. Annu. Rev. Plant. Physiol. 36: 367–396.

    Google Scholar 

  • Watson M.A. 1984. Developmental constraints: effects on population growth and patterns of resource allocation in a clonal plant. Am. Nat. 123: 411–426.

    Google Scholar 

  • Watson M.A. 1986. Integrated physiological units in plants. Trends Ecol. Evol. 1: 119–123.

    Google Scholar 

  • Whitham T.G. & Slobodchikoff C.N. 1981. Evolution by individuals, plant-herbivore interactions, and mosaics of genetic variability: the adaptive significance of somatic mutations in plants. Oecologia 49: 287–292.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Salomonson, A. Interactions between somatic mutations and plant development. Vegetatio 127, 71–75 (1996). https://doi.org/10.1007/BF00054848

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00054848

Key words

Navigation