Skip to main content
Log in

Oxidation of sulphur compounds in the atmosphere: I. Rate constants of OH radical reactions with sulphur dioxide, hydrogen sulphide, aliphatic thiols and thiophenol

  • Published:
Journal of Atmospheric Chemistry Aims and scope Submit manuscript

Abstract

The reactions of OH radicals with SO2, H2S, thiophenol, and a series of aliphatic thiols (1–5 C-atoms) have been investigated in 201 and 381 reaction chambers at 1 atm total pressure and 300 K using a competitive kinetic technique. Initially, OH radicals were produced by photolysis of CH3ONO/NO mixtures in air. Applying this OH source rate constants for OH with SO2, H2S, and thiophenol in synthetic air were determined to be (1.1±0.2)×10-12, (5.5±0.8)×10-12 and (1.1±0.2)×10-11 cm3 s-1, respectively. However, when this method was applied to the aliphatic thiols the rate constants obtained were found to be dependent on the partial pressures of O2 and NO. These effects have been attributed to the built-up of a radical species, not yet identified, which leads to uncontrolled chain reactions in the system. Using the photolysis of H2O2 at wavelengths greater than 260 nm as the OH source in 1 atm N2, rate constants for the 1–5 aliphatic thiols in the range 2.9 to 5.6×10-11 cm3 s-1 were obtained. The rate constants obtained in the present study are compared with recent literature values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andreae, M. O. and Raemdonck, H., 1983, Dimethyl sulfide in the surface ocean and the marine atmosphere: a gobal view, Science 221, 744–747.

    Google Scholar 

  • Atkinson, R., Perry, R. A. and Pitts, J. N.Jr., 1977, Rate constants for the reaction of the OH radical with CH3SH and CH3NH2 over the temperature range 299–426 K, J. Chem. Phys. 66, 1578–1581.

    Google Scholar 

  • Atkinson, R., Darnall, K. R., Lloyd, A. C., Winer, A. M. and Pitts, J. N.Jr., 1979, Kinetics and mechanisms of reactions of the hydroxyl radical with organic compounds in the gas phase, Adv. Photochem. 11, 375–538.

    Google Scholar 

  • Atkinson, R. and Lloyd, A. C., 1984, Evaluation of kinetics and mechanistic data for modeling of photochemical smog, J. Phys. Ref. Data 13, 315–444.

    Google Scholar 

  • Atkinson, R., Pitts, J. N.Jr. and Aschmann, S. M., 1984, Tropospheric reactions of dimethyl sulfide with NO3 and OH radicals, J. Phys. Chem. 88, 1584–1587.

    Google Scholar 

  • Balla, R. J. and Heicklen, J., 1985, Oxidation of sulfur compounds III: The photolysis of (CH3S)2 in the presence of O2, J. Photochem 29, 297–310.

    Google Scholar 

  • Barnard, W. R., Andreae, M. O., Watkins, W. E., Bingemer, H. and Georgii, H. W., 1982, The flux of dimethylsulfide from the oceans to the atmosphere, J. Geophys. Res. 87, 8787–8793.

    Google Scholar 

  • Barnes, I., Becker, K. H., Fink, E. H., Reimer, A., Zabel, F. and Niki, H., 1983, Rate constant and products of the reaction CS2+OH in the presence of O2, Int. J. Chem. Kinetics 15, 631–645.

    Google Scholar 

  • Barnes, I., Bastian, V., Becker, K. H. and Fink, E. H., 1984, Reactions of OH radicals with reduced sulfur compounds under atmospheric conditions, in: B. Versino, G. Angeletti, (ed.), Physico-Chemical Behaviour of Atmospheric Pollutants, D. Reidel Publ. Co., Dordrecht, Holland, pp. 149–157.

    Google Scholar 

  • Barnes, I., Becker, K. H., Fink, E. H., Reimer, A., Zabel, F. and Niki, H., 1985, FTIR Spectroscopic study of the gas-phase reaction of HO2 with H2CO, Chem. Phys. Letters 115, 1–8.

    Google Scholar 

  • Baulch, D. L., Cox, R. A., Hampson, R. F.Jr., Kerr, J. A., Troe, J. and Watson, R. T., 1980, Evaluated kinetic and photochemical data for atmospheric chemistry, J. Phys. Chem. Ref. Data 9, 295–471.

    Google Scholar 

  • Baulch, D. L., Cox, R. A., Crutzen, P. J., Hampson, R. F.Jr., Kerr, J. A., Troe, J. and Watson, R. T., 1982, Evaluated kinetic data and photochemical data for atmospheric chemistry: Supplement 1, J. Phys. Chem. Ref. Data 11, 327–496.

    Google Scholar 

  • Baulch, D. L., Cox, R. A., Hampson, R. F.Jr., Kerr, J. A., Troe, J. and Watson, R. T., 1984, Evaluated kinetic and photochemical data for atmospheric chemistry: Supplement II, J. Phys. Chem. Ref. Data 13, 1259–1380.

    Google Scholar 

  • Bingemer, H., 1984, Dimethylsulfid in Ozean und mariner Atmosphäre-Experimentelle Untersuchung einer natürlichen Schwefelquelle für die Atmosphäre, Doctoral Thesis, Institut für Meteorologie und Geophysik, J. W. Goethe-Universität Frankfurt, W. Germany.

  • Carlier, P., Luce, C., Girard, R., Mouvier, G., Morelli, J., Girard-Reydet, L., Marchal, T. and Cadene, S., 1984, Etude de l'influence d'une source locale naturelle intense de composes organosoufres sur la chimie de la troposphere en millieu non pollue. In: B. Versino and G. Angeletti (ed.), Physico-Chemical Behaviour of Atmospheric Pollutants, D. Reidel Publ. Co., Dordrecht, Holland, pp. 451–460.

    Google Scholar 

  • Carlier, P. and Mouvier, G., 1985, Considerations about the lifetime of dimethyl sulfide in the marine troposphere, submitted to Nature.

  • Castleman, A. W.Jr. and Tang, I. N., 1977, Kinetics of the association reaction of SO2 with the hydroxyl radical, J. Photochemistry 6, 349–354.

    Google Scholar 

  • Cox, R. A., 1974, The photolysis of HNO2 in the presence of carbon monoxide and sulfur dioxide, J. Photochemistry 3, 291–304.

    Google Scholar 

  • Cox, R. A. and Sheppard, D., 1980, Reactions of OH radicals with gaseous sulfur compounds, Nature 284, 330–331.

    Google Scholar 

  • Cullis, C. F. and Hirschler, M. M., 1980, Atmospheric sulphur: Natural and man-made sources, Atmos. Environ. 14, 1263–1278.

    Google Scholar 

  • Davis, D. D., Ravishankara, A. R. and Fischer, S., 1979, SO2 oxidation via the hydroxyl radical: Atmospheric fate of HSOx radicals, Geophys. Res. Letters 6, 113–116.

    Google Scholar 

  • DeMore, W. B., Watson, R. T., Golden, D. M., Hampson, R. F., Kurylo, M. J., Hoard, C. J., Molina, M. J. and Ravishankara, A. R., 1983, Chemical kinetics and photochemical data for use in stratospheric modeling, Jet Propulsion Labs., Pasadena, California, JPL Publication 83-62.

  • Doyle, G. J., Lloyd, A. C., Darnall, K. R., Winer, A. M. and Pitts, J. N.Jr., 1975, Gas phase kinetic study of relative rates of reactions of selected aromatic compounds with hydroxyl radicals in an environmental chamber, Environ. Sci. Technol. 9, 237–240.

    Google Scholar 

  • Galloway, J. N. and Whelpdale, D. M., 1980, An atmospheric sulfur budget for eastern North America, Atmos. Environ. 14, 409–417.

    Google Scholar 

  • Graedel, T. E., 1977, The homogeneous chemistry of atmospheric sulfur, Rev. Geophys. Space Phys. 15, 421–428.

    Google Scholar 

  • Graham, R. A., Winer, A. M., Atkinson, R. and Pitts, J. N. Jr., 1979, Rate constants for the reaction of HO2 with HO2, SO2, CO, N2O, trans-2-butene and 2,3-dimethyl-2-butene at 3OOK, J. Phys. Chem. 83, 1563–1567.

    Google Scholar 

  • Harris, G. W., Atkinson, R. and Pitts, J. N.Jr., 1980, Temperature dependence of the reaction OH+ SO2+M → HSO3 for M=Ar and SF, Chem. Phys. Letters 69, 378–382.

    Google Scholar 

  • Hatakeyama, S. and Aktimoto, H., 1983, Reaction of OH radicals with methanethiol, dimethylsulfide, and dimethyl disulfide in air, J. Phys. Chem. 87, 2387–2395.

    Google Scholar 

  • Izumi, K., Mizuochi, M., Yoshioko, M., Murano, K. and Fukuyama, T., 1984, Redetermination of the rate constant for the reaction of OH radicals with SO2, Environ. Sci. Technol. 18, 116–118.

    Google Scholar 

  • Jones, B. M. R., Burrows, J. P., Cox, R. A. and Penkett, S. A., 1982, OCS formation in the reaction of OH with CS2, Chem. Phys. Letters. 88, 372–376.

    Google Scholar 

  • Jones, B. M. R., Cox, R. A. and Penkett, S. A., 1983, Atmospheric chemistry of carbon disulphide, J. Atmos. Chem. 1, 65–86.

    Google Scholar 

  • Kirchner, K., Vettermann, R. and Indruch, H., 1978, Kinetics of the reactions of mercaptans with O(3P) under consideration of the influence of molecular oxygen, Ber. Bunsenges. Phys. Chem. 82, 1223–1230.

    Google Scholar 

  • Klein, Th., Barnes, I., Becker, K. H., Fink, E. H. and Zabel, F., 1984, Pressure dependence of the rate constants for the reactions of C2H4 and C3H6 with OH radicals at 295 K, J. Phys. Chem. 88, 5020–5025.

    Google Scholar 

  • Lee, J. H. and Tang, I. N., 1983, Absolute rate constants for the hydroxyl radical reactions with CH3SH and C2H5SH at room temperature, J. Chem. Phys. 78, 6646–6649.

    Google Scholar 

  • Leu, M. and Smith, R. H., 1982, Rate constants for the gas-phase reaction between hydroxyl and hydrogen sulfide over the temperature range 228–518 K, J. Phys. Chem. 86, 73–81.

    Google Scholar 

  • Lin, C. L., 1982, Temperature dependence of the rate constant for the reaction OH+H2S, Int. J. Chem. Kinetics, 14 593–598.

    Google Scholar 

  • MacLeod, H., Poulet, G. and Le Bras, G., 1983, Etude cinetique des reactions du radical OH avec CH3SCH3, CH3SH et C2H5SH, J. de Chimie Physique 80, 287–292.

    Google Scholar 

  • Margitan, J. J., 1984, Mechanism of the atmospheric oxidation of sulfur dioxide. Catalysis of hydroxyl radicals, J. Phys. Chem. 88, 3314–3318.

    Google Scholar 

  • Michael, J. V., Nava, D. F., Brobst, W. D., Borkowski, R. P. and Stief, L. J., 1982, Temperature dependence of the absolute rate constants for the reaction of hydroxyl radical with hydrogen sulfide, J. Phys. Chem. 86, 81–84.

    Google Scholar 

  • Möller, D., 1984, Estimate of the global man-made sulphur emission, Atmos. Environ. 18, 19–27.

    Google Scholar 

  • Niki, H., Maker, P. D., Savage, C. M. and Breitenbach, L. P., 1981, An FTIR study of mechanisms for the OH radical initiated oxidation of C2H4 in the presence of NO: Detection of glycolaldehyde, Chem. Phys. Letters 80, 499–503.

    Google Scholar 

  • Ohta, T., 1983, Rate constants for the reaction of diolefins with OH radicals in the gas phase. Estimate of the rate constants from those for monoolefins, J. Phys. Chem. 87, 1209–1213.

    Google Scholar 

  • Ohta, T., 1984, Rate constants for the reactions of OH radicals with alkyl substituted olefins, Int. J. Chem. Kinetics 16, 879–886.

    Google Scholar 

  • Paraskevopoulos, G., Singleton, D. L. and Irwin, R. S., 1983, Rates of OH radical reactions. The reaction OH+SO2+N2, Chem. Phys. Letters. 100, 83–87.

    Google Scholar 

  • Schmidt, V., Zhu, Gui-Yun, Becker, K. H. and Fink, E. H., 1985, Absolute rate constant measurements of OH reactions under atmospheric conditions by laser photolysis/dye laser fluorescence, in: B. Versino and G. Angeletti (ed.), Physico-Chemical Behaviour of Atmospheric Pollutants, D. Reidel Publ. Co., Dordrecht, Holland, pp. 177–187.

    Google Scholar 

  • Schmidt, V., Zhu Gui-Yun, Becker, K. H. and Fink, E. H., 1985, Study of OH reactions at high pressures by excimer laser photolysis-dye laser fluorescence, Ber. Bunsenges. Phys. Chem., 89, 321–322.

    Google Scholar 

  • Slage, I. R., Graham, R. E. and Gutman, D., 1976, Direct identification of reactive routes and measurements of rate constants in the reactions of oxygen atoms with methanethiol, ethanethiol, and methylsulfide, Int. J. Chem. Kinetics 8, 451–458.

    Google Scholar 

  • Taylor, W. D., Allston, T. D., Mascato, M. T., Fazekes, G. B., Kazlowski, R. and Takacs, G. A., 1980, Atmospheric photodissociation lifetimes for nitromethane, methyl nitrite, and methyl nitrate, Int. J. Chem. Kinetics 12, 231–240.

    Google Scholar 

  • Turner, S. M. and Liss, P. S., 1985, Measurements of various sulphur gases in a coastal marine environment, J. Atmos. Chem. 2, 223–232.

    Google Scholar 

  • Varhely, G. and Gravenhorst, G., 1981, An attempt to estimate biogenic sulfur emission into the atmosphere, J. Hungarian Met. Service 85, 126–133.

    Google Scholar 

  • Westly, F., 1982, Tables of Rate Constants for Gas Phase Chemical Reactions of Sulfur Compounds (1971–1980), National Bureau of Standards Report No. NSRDS-NBS 72.

  • Wine, P. H., Kreutter, N. M., Gump, C. A. and Ravishankara, A. R., 1981, Kinetics of OH reactions with the atmospheric sulfur compounds H2S, CH3SH, CH3SCH3 and CH3SSCH3, J. Phys. Chem. 85, 2660–2665.

    Google Scholar 

  • Wine, P. H., Thompson, R. J. and Semmes, D. H., 1984a, Kinetics of OH reactions with aliphatic thiols, Int. J. Chem. Kinetics 16, 1623–1636.

    Google Scholar 

  • Wine, P. H., Thompson, R. J., Ravishankara, A. R., Semmes, D. H., Gump, C. A., Torabi, A. and Nicovich, J. M., 1984b, Kinetics of the reaction OH+SO2+M → HOSO2+. Temperature and pressure dependence in the fall-off region, J. Phys. Chem. 88, 2095–2104.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barnes, I., Bastian, V., Becker, K.H. et al. Oxidation of sulphur compounds in the atmosphere: I. Rate constants of OH radical reactions with sulphur dioxide, hydrogen sulphide, aliphatic thiols and thiophenol. J Atmos Chem 4, 445–466 (1986). https://doi.org/10.1007/BF00053845

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00053845

Key words

Navigation