Skip to main content

Advertisement

Log in

Sodium and lithium ions in aerosol: thermodynamic and rayleigh light scattering properties

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

With the oceans covering more than 70% of the Earth’s surface, sea spray aerosol particles contribute significantly to the Earth’s radiation budget and serve as seeds for cloud formation and impact various biogeochemical cycles and ecosystems. The sea spray aerosol particles are being the mixture of inorganic sea salt and organic substances and are one of the largest sources of natural aerosol particles on Earth’s atmosphere. Sodium \( \left( {{\text{Na}}^{ + } } \right) \) and lithium \( \left( {{\text{Li}}^{ + } } \right) \) ions are common constituents of ocean waters and found in abundance in sea spray aerosol particles. The gaseous ammonia is the most abundant alkaline gas in the marine troposphere and plays a vital role in forming marine aerosol particles. In this study, the structural characteristics and thermodynamic properties of sodium ion and lithium ion hydrated clusters were analyzed. Ammonia containing sodium and lithium ion hydrated clusters have also been investigated. Rayleigh scattering properties of these clusters have been investigated systematically. All these properties are obtained by using different levels of density functional theory. We find that sodium and lithium ions can form stable clusters from the gas phase (i.e., nucleation). Furthermore, sodium and lithium ion hydrated aerosol formation are enhanced substantially by the presence of ammonia. Our results suggest that the Rayleigh scattering intensity shows quadratic growth with the increase in the cluster size. The results also indicate that a single ammonia molecule in cluster results in increased scattering intensity of the ammonia containing sodium and lithium ion hydrated clusters. We computed Rayleigh scattering intensities for our studied clusters at various wavelengths (∞, 700, 600, 500, and 400 nm). These wavelengths follow the same growth pattern, with 400 nm having a substantial increase of Rayleigh scattering intensities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Aerosols and Incoming Sunlight (Direct Effects). [Internet]. NASA. Accessed 13 June 2019

  2. Haywood J, Boucher O (2000) Estimates of the direct and indirect radiative forcing due to tropospheric aerosols: a review. Rev Geophys 38:513–543

    CAS  Google Scholar 

  3. Kulmala M, Riipinen I, Sipilä M, Manninen HE, Petäjä T, Junninen H et al (2007) Toward direct measurement of atmospheric nucleation. Science 318:89–92

    CAS  PubMed  Google Scholar 

  4. Sipilä M, Lehtipalo K, Kulmala M, Petäjä T, Junninen H, Aalto PP et al (2008) Applicability of condensation particle counters to measure atmospheric clusters. Atmos Chem Phys 8:4049–4060

    Google Scholar 

  5. Lehtipalo K, Sipila M, Riipinen I, Nieminen T, Kulmala M (2009) Analysis of atmospheric neutral and charged molecular clusters in boreal forest using pulse-height CPC. Atmos Chem Phys 9:4177–4184

    CAS  Google Scholar 

  6. Manninen HE, Petäjä T, Asmi E, Riipinen I, Nieminen T, Mikkilä J et al (2009) Long-term field measurements of charged and neutral clusters using neutral cluster and air ion spectrometer (NAIS). Boreal Environ Res 14:591–605

    CAS  Google Scholar 

  7. Brasseur GP, Solomon S (2005) Aeronomy of the middle atmosphere. In: Hamilton LAMK (ed) Aeronomy of the middle atmosphere. 32. Third revised and enlarged edition ed. Springer, Boulder, Co, pp 177–80

  8. Zhang R (2010) Getting to the critical nucleus of aerosol formation. Science 328:1366–1367

    CAS  PubMed  Google Scholar 

  9. Zhang R, Khalizov A, Wang L, Hu M, Xu W (2012) Nucleation and growth of nanoparticles in the atmosphere. Chem Rev 112:1957–2011

    CAS  PubMed  Google Scholar 

  10. Kulmala M (2003) How particles nucleate and grow. Science 302:1000–1001

    CAS  PubMed  Google Scholar 

  11. Zhang R, Suh I, Zhao J, Zhang D, Fortner EC, Tie X et al (2004) Atmospheric new particle formation enhanced by organic acids. Science 304:1487–1490

    CAS  PubMed  Google Scholar 

  12. Kulmala M, Petäjä T, Nieminen T, Sipilä M, Manninen HE, Lehtipalo K et al (2012) Measurement of the nucleation of atmospheric aerosol particles. Nat Protoc 7:1651–1667

    CAS  PubMed  Google Scholar 

  13. Kulmala M, Kontkanen J, Junninen H, Lehtipalo K, Manninen HE, Nieminen T et al (2013) Direct observations of atmospheric aerosol nucleation. Science 339:943–946

    CAS  PubMed  Google Scholar 

  14. Sipilä M, Berndt T, Petäjä T, Brus D, Vanhanen J, Stratmann F et al (2010) The role of sulfuric acid in atmospheric nucleation. Science 327:1243–1246

    PubMed  Google Scholar 

  15. Kirkby J, Curtius J, Almeida J, Dunne E, Duplissy J, Ehrhart S et al (2011) Role of sulphuric acid, ammonia and galactic cosmic rays in atmospheric aerosol nucleation. Nature 476:429–433

    CAS  PubMed  Google Scholar 

  16. Kurtén T, Loukonen V, Vehkamäki H, Kulmala M (2008) Amines are likely to enhance neutral and ion-induced sulfuric acid-water nucleation in the atmosphere more effectively than ammonia. Atmos Chem Phys 8:4095–4103

    Google Scholar 

  17. Ortega IK, Kupiainen O, Kurtén T, Olenius T, Wilkman O, McGrath MJ et al (2012) From quantum chemical formation free energies to evaporation rates. Atmos Chem Phys 12:225–235

    CAS  Google Scholar 

  18. Zhao J, Khalizov A, Zhang R, McGraw R (2009) Hydrogen-bonding interaction in molecular complexes and clusters of aerosol nucleation precursors. J Phys Chem A 113:680–689

    CAS  PubMed  Google Scholar 

  19. Andreae MO (2013) The aerosol nucleation puzzle. Science 339:911–912

    PubMed  Google Scholar 

  20. Riccobono F, Schobesberger S, Scott CE, Dommen J, Ortega IK, Rondo L et al (2014) Oxidation products of biogenic emissions contribute to nucleation of atmospheric particles. Science 344:717–721

    CAS  PubMed  Google Scholar 

  21. Ehn M, Thornton JA, Kleist E, Sipila M, Junninen H, Pullinen I et al (2014) A large source of low-volatility secondary organic aerosol. Nature 506:476–479

    CAS  PubMed  Google Scholar 

  22. Kirkby J, Duplissy J, Sengupta K, Frege C, Gordon H, Williamson C et al (2016) Ion-induced nucleation of pure biogenic particles. Nature 533:521–526

    CAS  PubMed  Google Scholar 

  23. Buszek RJ, Francisco JS, Anglada JM (2011) Water effects on atmospheric reactions. Int Rev Phys Chem 30:335–369

    CAS  Google Scholar 

  24. Ding G, Laasonen K, Laaksonen A (2003) Two sulfuric acids in small water clusters. J Phys Chem A 107:8648–8658

    CAS  Google Scholar 

  25. Ding G, Laasonen K (2004) Partially and fully deprotonated sulfuric acid in H2SO4(H2O)n (n = 6 − 8) clusters. Chem Phys Lett 390:307–313

    CAS  Google Scholar 

  26. Kildgaard JV, Mikkelsen KV, Bilde M, Elm J (2018) Hydration of atmospheric molecular clusters: a new method for systematic configurational sampling. J Phys Chem A 122:5026–5036

    CAS  PubMed  Google Scholar 

  27. Zollner JH, Glasoe WA, Panta B, Carlson KK, McMurry PH, Hanson DR (2012) Sulfuric acid nucleation: power dependencies, variation with relative humidity, and effect of bases. Atmos Chem Phys 12:4399–4411

    CAS  Google Scholar 

  28. Glasoe WA, Volz K, Panta B, Freshour N, Bachman R, Hanson DR et al (2015) Sulfuric acid nucleation: an experimental study of the effect of seven bases. J Geophys Res Atmos 120:1933–1950

    CAS  Google Scholar 

  29. Woodcock AH (1953) Salt nuclei in marine air as a function of altitude and wind force. J Meteorol 10:362–371

    Google Scholar 

  30. Knelman F, Dombrowski N, Newitt DM (1954) Mechanism of the bursting of bubbles. Nature 173:261

    Google Scholar 

  31. Spiel DE (1998) On the births of film drops from bubbles bursting on seawater surfaces. J Geophys Res Oceans 103:24907–24918

    Google Scholar 

  32. Lewis ER, Schwartz SE (2004) Sea salt aerosol production: mechanisms, methods, measurements and models—a critical review. Am Geophys Union

  33. Haywood JM, Ramaswamy V, Soden BJ (1999) Tropospheric aerosol climate forcing in clear-sky satellite observations over the oceans. Science 283:1299–1303

    CAS  PubMed  Google Scholar 

  34. Andreae MO, Rosenfeld D (2008) Aerosol–cloud–precipitation interactions Part 1 The nature and sources of cloud-active aerosols. Earth-Sci Rev 89:13–41

    Google Scholar 

  35. Lihavainen H, Kerminen VM, Komppula M, Hyvärinen AP, Laakia J, Saarikoski S et al (2008) Measurements of the relation between aerosol properties and microphysics and chemistry of low-level liquid water clouds in Northern Finland. Atmos Chem Phys 8:6925–6938

    CAS  Google Scholar 

  36. George SK, Nair PR, Parameswaran K, Jacob S, Abraham A (2008) Seasonal trends in chemical composition of aerosols at a tropical coastal site of India. J Geophys Res Atmos 113:D16209

    Google Scholar 

  37. Metzger S, Mihalopoulos N, Lelieveld J (2006) Importance of mineral cations and organics in gas-aerosol partitioning of reactive nitrogen compounds: case study based on MINOS results. Atmos Chem Phys 6:2549–2567

    CAS  Google Scholar 

  38. Millero FJ (2005) Chemical oceanography. CRC Press, Boca Raton

    Google Scholar 

  39. Xiao H-W, Xiao H-Y, Shen C-Y, Zhang Z-Y, Long A-M (2018) Chemical composition and sources of marine aerosol over the western north pacific ocean in winter. Atmosphere 9:298

    Google Scholar 

  40. Cardoso J, Almeida SM, Nunes T, Almeida-Silva M, Cerqueira M, Alves C et al (2018) Source apportionment of atmospheric aerosol in a marine dusty environment by ionic/composition mass balance (IMB). Atmos Chem Phys 18:13215–13230

    CAS  Google Scholar 

  41. Xiao HW, Xiao HY, Luo L, Shen CY, Long AM, Chen L et al (2017) Atmospheric aerosol compositions over the South China Sea: temporal variability and source apportionment. Atmos Chem Phys 17:3199–3214

    CAS  Google Scholar 

  42. Lyons WB, Welch KA (1997) Lithium in waters of a polar desert. Geochim Cosmochim Acta 61:4309–4319

    CAS  Google Scholar 

  43. Quinn PK, Charlson RJ, Zoller WH (1987) Ammonia, the dominant base in the remote marine troposphere: a review. Tellus B 39:413–425

    Google Scholar 

  44. Dzidic I, Kebarle P (1970) Hydration of the alkali ions in the gas phase. Enthalpies and entropies of reactions M+(H2O)n-1 + H2O = M+(H2O)n. J Phys Chem 74:1466–1474

    CAS  Google Scholar 

  45. Feller D, Glendening ED, Kendall RA, Peterson KA (1994) An extended basis set ab initio study of Li+(H2O)n, n = 1–6. J Chem Phys 100:4981–4997

    CAS  Google Scholar 

  46. Feller D, Glendening ED, Woon DE, Feyereisen MW (1995) An extended basis set ab initio study of alkali metal cation–water clusters. J Chem Phys 103:3526–3542

    CAS  Google Scholar 

  47. Kim J, Lee S, Cho SJ, Mhin BJ, Kim KS (1995) Structures, energetics, and spectra of aqua-sodium(I): thermodynamic effects and nonadditive interactions. J Chem Phys. 102:839–849

    CAS  Google Scholar 

  48. Rodgers MT, Armentrout PB (1997) Collision-induced dissociation measurements on Li + (H2O)n, n = 1–6: the first direct measurement of the Li + −OH2 bond energy. J Phys Chem A 101:1238–1249

    CAS  Google Scholar 

  49. Hashimoto K, Kamimoto T (1998) Theoretical study of microscopic solvation of lithium in water clusters: neutral and cationic Li(H2O)n (n = 1–6 and 8). J Am Chem Soc 120:3560–3570

    CAS  Google Scholar 

  50. Lukyanov SI, Zidi ZS, Shevkunov SV (2003) Study of aqvist’s ion–water interaction model in na+–water clusters: free energy and structure. J Mol Struct: THEOCHEM. 623:221–236

    CAS  Google Scholar 

  51. Li X, Yang Z-Z (2005) Study of lithium cation in water clusters: based on atom-bond electronegativity equalization method fused into molecular mechanics. J Phys Chem A 109:4102–4111

    CAS  PubMed  Google Scholar 

  52. Zidi ZS (2012) On the stability of ion water clusters at atmospheric conditions: open system Monte Carlo simulation. J Chem Phys. 137:124107

    PubMed  Google Scholar 

  53. Elm J, Bilde M, Mikkelsen KV (2012) Assessment of density functional theory in predicting structures and free energies of reaction of atmospheric prenucleation clusters. J Chem Theory Comput 8:2071–2077

    CAS  PubMed  Google Scholar 

  54. Elm J, Bilde M, Mikkelsen KV (2013) Assessment of binding energies of atmospherically relevant clusters. Phys Chem Chem Phys 15:16442–16445

    CAS  PubMed  Google Scholar 

  55. Leverentz HR, Siepmann JI, Truhlar DG, Loukonen V, Vehkamäki H (2013) Energetics of atmospherically implicated clusters made of sulfuric acid, ammonia, and dimethyl amine. J Phys Chem A 117:3819–3825

    CAS  PubMed  Google Scholar 

  56. Bork N, Du L, Kjaergaard HG (2014) Identification and characterization of the HCl–DMS gas phase molecular complex via infrared spectroscopy and electronic structure calculations. J Phys Chem A 118:1384–1389

    CAS  PubMed  Google Scholar 

  57. Zhao Y, Truhlar DG (2008) The M06 Suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor Chem Acc. 120:215–241

    CAS  Google Scholar 

  58. Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys. 98:5648–5652

    CAS  Google Scholar 

  59. Yanai T, Tew DP, Handy NC (2004) A new hybrid exchange–correlation functional using the coulomb-attenuating method (CAM-B3LYP). Chem Phys Lett 393:51–57

    CAS  Google Scholar 

  60. Chai J-D, Head-Gordon M (2008) Long-range corrected hybrid density functionals with damped atom-atom dispersion corrections. Phys Chem Chem Phys 10:6615–6620

    CAS  PubMed  Google Scholar 

  61. Kildgaard JV, Mikkelsen KV, Bilde M, Elm J (2018) Hydration of atmospheric molecular clusters II: organic acid-water clusters. J Phys Chem A 122:8549–8556

    CAS  PubMed  Google Scholar 

  62. Elm J, Mikkelsen KV (2014) Computational approaches for efficiently modelling of small atmospheric clusters. Chem Phys Lett 615:26–29

    CAS  Google Scholar 

  63. Myllys N, Elm J, Kurtén T (2016) Density functional theory basis set convergence of sulfuric acid-containing molecular clusters. Comput Theor Chem. 1098:1–12

    CAS  Google Scholar 

  64. Boys SF, Bernardi F (1970) The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol Phys 19:553–566

    CAS  Google Scholar 

  65. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR et al (2016) Gaussian 16 revision, A03 edn. Gaussian Inc, Wallingford

    Google Scholar 

  66. Elm J, Norman P, Bilde M, Mikkelsen KV (2014) Computational study of the rayleigh light scattering properties of atmospheric pre-nucleation clusters. Phys Chem Chem Phys 16:10883–10890

    CAS  PubMed  Google Scholar 

  67. Peng X-Q, Liu Y-R, Huang T, Jiang S, Huang W (2015) Interaction of gas phase oxalic acid with ammonia and its atmospheric implications. Phys Chem Chem Phys 17:9552–9563

    CAS  PubMed  Google Scholar 

  68. Wenger M, Armbruster T (1991) Crystal chemistry of lithium; oxygen coordination and bonding. Eur J Mineral 3:387–399

    CAS  Google Scholar 

  69. Wood RM, Palenik GJ (1999) Bond valence sums in coordination chemistry sodium − oxygen complexes. Inorg Chem 38:3926–3930

    CAS  Google Scholar 

  70. Yamaji K, Makita Y, Watanabe H, Sonoda A, Kanoh H, Hirotsu T et al (2001) Theoretical estimation of lithium isotopic reduced partition function ratio for lithium ions in aqueous solution. J Phys Chem A 105:602–613

    CAS  Google Scholar 

  71. Watanabe H, Yamaji K, Sonoda A, Makita Y, Kanoh H, Ooi K (2003) Theoretical estimation of the solvent effect of the lithium isotopic reduced partition function ratio. J Phys Chem A 107:7832–7844

    CAS  Google Scholar 

Download references

Funding

This work was supported by the Council of Scientific and Industrial Research of India (Grant No. 01 (2890)/17/EMR-11). The author is also thankful to the Indian Institute of Technology Patna for financial support and research facilities at IIT Patna.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ranga Subramanian.

Ethics declarations

Conflict of interest

The authors reported no potential conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 17869 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pal, J., Teja, P.S. & Subramanian, R. Sodium and lithium ions in aerosol: thermodynamic and rayleigh light scattering properties. Theor Chem Acc 139, 173 (2020). https://doi.org/10.1007/s00214-020-02683-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-020-02683-z

Keywords

Navigation