Skip to main content
Log in

Factors determining distributions of tree species and plant functional types

  • Published:
Vegetatio Aims and scope Submit manuscript

Abstract

Plant functional types have been identified by the International Geosphere Biosphere Program as functionally similar basic plant types, especially trees, as needed for global ecological modeling. Based to some extent on an earlier set of pheno-physiognomically defined plant types, a Global Biome Model was produced but has not satisfied all the desired functional criteria posed by IGBP physiologists and modelers. This paper asks two questions: what are the main environmental factors which limit terrestrial plant types, especially tree types; and how many types of potential vegetation are needed to cover the world's terrestrial vegetation patterns? Based on the main environmental factors recognized, a model of world potential dominant vegetation types was produced and used to estimate the minimal number of vegetation types needed. The resulting set of 40 potential dominant vegetation types may serve as an initial basis for a structural-functionally based set of world plant functional types.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bailey, R.G. 1990. ‘Ecoregions Map of the Continents’ (world map with explanatory supplement). Envl. Conserv. 16(4): 307–309, plus map.

    Google Scholar 

  • Box, E.O. 1981. Macroclimate and Plant Forms: An Introduction to Predictive Modeling in Phytogeography. Tasks for Vegetation Science, Vol. 1. The Hague: Dr. W. Junk BV, Publishers. 258 pp.

    Google Scholar 

  • Box, E.O. 1982. SOLWAT: A Minimal-Input Soil Water Simulation System Applicable to a Full Range of Natural Situations. User's Manual for Version 2.2 (27 pp, computer-printable) + FORTRAN program (from the author).

  • Box, E.O. 1984. Productivity and plant types — some thoughts on a synthesis. Portugaliae Acta Biolog., ser. A 17: 129–148.

    Google Scholar 

  • Box, E.O. 1986. Some Climatic Relations of the Vegetation of Argentina, in global perspective. In: Eskuche, U. & Landolt, E. (eds), Contributions to the Knowledge of the Flora and Vegetation of Northern Argentina. Zürich: Veröff. Geobot. Inst. ETH, Stiftung Rübel, pp. 181–216.

    Google Scholar 

  • Box, E.O. 1987. Plant life forms and mediterranean environments. Annali di Botanica 45(2): 7–42.

    Google Scholar 

  • Box, E.O. 1988. Some similarities in the climates and vegetation of central Honshu and central eastern North America. Veröff. Geobot. Inst. Rübel 98: 141–168.

    Google Scholar 

  • Box, E.O. 1993. Coordinating theoretical and satellite-based global vegetation maps. In: Proceedings, Autumn 1993 Meeting, Japanese Society for Photogrammetry and Remote Sensing, Kanazawa, pp. 55–56.

  • Box, E.O., Crumpacker, D.W. & Hardin, E.D. 1993. A climatic model for plant species locations in Florida. J. Biogeography 20: 629–644.

    Google Scholar 

  • Brady, N.C. 1974. The Nature and Properties of Soils. 8th edition. New York: Macmillan Publ. Co.

    Google Scholar 

  • Chapin, F.S. 1993. Functional Role of Growth Forms in Ecosystem and Global Processes. In: Ehleringer, J.R. & Field, Ch. (eds), Scaling Physiological Processes: Leaf to Globe, San Diego: Academic Press, pp. 287–312.

    Google Scholar 

  • Cramer, W.P. & R., Leemans 1993. Assessing Impacts of Climate Change on Vegetation using Climate Classification Systems. In: Solomon, A.M. & Shugart, H.H. (eds), Vegetation Dynamics and Global Change. London: Chapman and Hall. 338 pp., pp. 190–217.

    Google Scholar 

  • GCTE 1991. Report of Focus 2 Meeting, Trondheim, Norway, 11–14 June 1991, Canberra: GCTE Core Project Office.

    Google Scholar 

  • Grime, J.P. 1979. Plant Strategies and Vegetation Processes. New York: Wiley. 222 pp.

    Google Scholar 

  • Grime, J.P. 1993. Vegetation Functional Classification Systems as Approaches to Predicting and Quantifying Global Vegetation Change. In: Solomon, A.M. & Shugart, H.H. (eds), Vegetation Dynamics and Global Change. London: Chapman and Hall. 338 pp., pp. 293–305.

    Google Scholar 

  • Holdridge, L.R. 1947. Determination of world plant formations from simple climatic data. Science 105: 367–368.

    Google Scholar 

  • Holdridge, L.R. 1959. A simple method for determining potential evapotranspiration from temperature data. Science 130: 572.

    Google Scholar 

  • Holdridge, L.R. 1967. Life Zone Ecology. San Jose (Costa Rica): Tropical Science Center.

    Google Scholar 

  • Humboldt, A.von 1806. Ideen zu einer Physiognomik der Gewächse. Stuttgart: Cotta. 28 pp.

    Google Scholar 

  • Humboldt, A. von 1807. Ideen zu einer Geographie der Pflanzen nebst einem Naturgemälde der Tropenländer. Tübingen.

  • IGBP 1992. Global Change: Reducing Uncertainties. Stockholm: IGBP Secretariat. 40 pp.

    Google Scholar 

  • Larcher, W. 1976. Ökologie der Pflanzen. 2nd edition. Stuttgart: Verlag Eugen Ulmer. 320 pp.

    Google Scholar 

  • Lauer, W. 1952. Humide und aride Jahreszeiten in Afrika und Südamerika und ihre Beziehung zu den Vegetationsgürteln. Bonner Geograph. Anhandl. 9.

  • Levitt, J. 1969. Growth and survival of plants at extremes of temperature — a unified concept. Symp. Soc. Experim. Biol. 23: 395–448.

    Google Scholar 

  • Levitt, J. 1972. Responses of Plants to Environmental Stresses. New York: Academic Press. 697 pp.

    Google Scholar 

  • Lieth, H. 1975. Primary Production of the Major Vegetation Units of the World. In: Lieth, H. & Whittaker, R.H. (eds), Primary Productivity of the Biosphere. New York: Springer-Verlag, pp. 203–215.

    Google Scholar 

  • Mather, J.R. & Yoshioka, G.A. 1966. The Role of Climate in the Distribution of Vegetation. In: Carter, D.B. & Mather, J.R. (eds), Climatic Classification for Environmental Biology. Public. in Climatol. (Univ. Delaware) 19(4): 372–384.

  • Meentemeyer, V. & Box, E.O. 1987. Scale effects in studies of landscape diversity and disturbance. In: Turner, M.G. (ed), The Role of Landscape Heterogeneity in the Spread of Disturbance. New York: Springer-Verlag, pp. 15–34.

    Google Scholar 

  • Prentice, I.C., Cramer, W., Harrison, S.P., Leemans, R., Monserud, R.A. & Solomon, A.M. 1992. Global biome model: predicting global vegetation patterns from plant physiology and dominance, soil properties and climate. J. Biogeogr. 19: 117–134.

    Google Scholar 

  • Rübel, E.F. 1930. Pflanzengesellschaften der Erde. Verlag Hans Huber. 464 pp.

  • Schmithüsen, J. 1976. Atlas zur Biogeographie. Meyers Grosser Physischer Weltatlas, vol. 3. Mannheim/Wien/Zürich: Bibliographisches Institut.

    Google Scholar 

  • Smith, T.M., Shugart, H.H., Woodward, F.I. & Burton, P.J. 1993. Plant Functional Types. In: Solomon, A.M. & Shugart, H.H. (eds), Vegetation Dynamics and Global Change. London: Chapman and Hall. 338 pp., pp. 272–292.

    Google Scholar 

  • Solomon, A.M. & Shugart, H.H. (eds) 1993. Vegetation Dynamics and Global Change. London: Chapman and Hall (for Internat. Inst. Applied Systems Analysis). 338 pp.

    Google Scholar 

  • Steffen, W.L., Walker, B.H., Ingram, J.S. & Koch, G.W. (eds) 1992. Global Change and Terrestrial Ecosystems: The Operational Plan. Global Change Report no. 21. Stockholm: Internat. Geosphere-Biosphere Programme. 95 pp.

    Google Scholar 

  • Tateishi, R. & Kajiwara, K. 1991. Global Land Cover Classification by NOAA GVI Data. In: Murai, Sh. (ed), Applications of Remote Sensing in Asia and Oceania. Tokyo: Asian Association on Remote Sensing, pp. 9–14.

    Google Scholar 

  • Tateishi, R., Kajiwara, K. & Odajima, T. 1991. Global land cover classification by phenological methods using NOAA GVI Data. Asian-Pacific Remote Sensing Journal 4(1): 41–50.

    Google Scholar 

  • Tchebakova, N.M., Monserud, R.A., Leemans, R. & Golovanov, S. 1993. A global vegetation model based on the climatological approach of Budyko. J. Biogeogr. 20: 129–144.

    Google Scholar 

  • Thornthwaite, C.W. & Mather, J.R. 1955. The Water Balance. Publ. in Climatol. (Univ. Delaware) 8(1): 1–104.

    Google Scholar 

  • Thornthwaite, C.W. & Mather, J.R. 1957. Instructions and Tables for Computing Potential Evapotranspiration and the Water Balance. Publ. in Climatol. (Univ. Delaware) 10(3): 185–311.

    Google Scholar 

  • Walker, B.H. 1992. Landscape to regional-scale responses of terrestrial ecosystems to global change. Abstract from IGBP symposium, reprinted in IGBP Newsletter 13, p. 18.

  • Walter, H. 1977. Vegetationszonen und Klima. 3rd ed. Stuttgart: Eugen-Ulmer-Verlag. 309 pp.

    Google Scholar 

  • Walter, H. 1985. Vegetation of the Earth. 3rd ed. Berlin, New York, Tokyo: Springer-Verlag. 318 pp.

    Google Scholar 

  • Walter, H. & Box, E.O. 1976. Global classification of natural terrestrial ecosystems. Vegetatio 32: 75–81.

    Google Scholar 

  • Whittaker, R.H. & Likens, G.E. 1975. The Biosphere and Man. In: Lieth, H. & Whittaker, R.H. (eds), Primary Productivity of the Biosphere. New York: Springer-Verlag, pp. 305–328.

    Google Scholar 

  • Wolfe, J.A. 1979. Temperature parameters of humid to mesic forests of eastern Asia and relation to forests of other regions of the Northern Hemisphere and Australasia. Washington: U.S. Geological Survey, Professional Paper No. 1106. 37 pp.

    Google Scholar 

  • Woodward, I. 1987. Climate and Plant Distribution. Cambridge University Press. 174 pp.

  • Zabinski, C. & Davis, M.B. 1989. Hard times ahead for Great Lakes forests: a climate threshold model predicts responses to CO2-induced climate change. In: Smith, J.B. & Tirpak, D. (eds), The Potential Effects of Global Climate Change on the United States, Appendix D: Forests. Washington: US Environm. Protection Agency, pp. 5–1–5–19.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Box, E.O. Factors determining distributions of tree species and plant functional types. Vegetatio 121, 101–116 (1995). https://doi.org/10.1007/BF00044676

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00044676

Key words

Navigation