Skip to main content
Log in

Combined Effect of Light Intensity and Nitrogen Concentration in a Medium on the Structural and Functional Characteristics of Microalgae

  • PHYTOPLANKTON, PHYTOBENTHOS, PHYTOPERIPHYTON
  • Published:
Inland Water Biology Aims and scope Submit manuscript

Abstract

This study investigates the change in light dependences of the specific growth rate and carbon to the chlorophyll a ratio in marine diatom Phaeodactylum tricornutum on the initial nitrogen concentration in a nutrient medium. In different variants of experiment, the nitrogen content in the medium (in nitrate form) ranged from 10 to 414 μM; the light intensity varied between 14 and 1200 μE m–2 s–1. It is found that the combined effect of light intensity and the degree of nitrogen availability to cells on the studied characteristics of algae is observed under the light inhibition of growth. A decrease in the initial nitrogen concentration in the medium leads to a narrowing of the optimal range of light intensity for algae growth, an increase in the degree of a light inhibition of growth rate, and a progressive decrease in the chlorophyll content in the cells. The half-saturation constant calculated from the Monod equation increases with light intensity on a power-law relationship. The regularities of the specific growth rate and the intracellular chlorophyll a content changes depending on the nitrogen concentration in the medium, and light conditions of cultivation can be used in developing models for assessing the biomass and primary production of phytoplankton, as well as in the interpretation of data from monitoring natural waters and in biotechnology for the mass cultivation of microalgae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Andersen, R.A., Algal Culturing Techniques, Amsterdam: Elsevier, 2005.

    Google Scholar 

  2. Anderson, S.M. and Roels, O.A., Effects of light intensity on nitrate and nitrate uptake and excretion by Chaetoceros curvisetus, Mar. Biol., 1981, vol. 62, p. 257. https://doi.org/10.1007/BF00397692

    Article  CAS  Google Scholar 

  3. Baird, M.E., Ralph, P.J., Rizwi, F., et al., A dynamic model of the cellular carbon to chlorophyll ratio applied to a batch culture and a continental shelf ecosystem, Limnol. Oceanogr., 2013, vol. 58, no. 4, p. 1215. https://doi.org/10.4319/lo.2013.58.4.1215

    Article  CAS  Google Scholar 

  4. Behrenfeld, M., Boss, E., Siegel, D.A., and Shea, D.M., Carbon-based ocean productivity and phytoplankton physiology from space, Global Biogeochem. Cycles, 2005, vol. 19, no. 1. p. GB1006. https://doi.org/10.1029/2004GB002299

    Article  CAS  Google Scholar 

  5. Ben-Amotz, A., Shaish, V., and Avron, M., Mode of action of the massively accumulated β-carotene of Dunaliella bardawil in protecting the alga against damage by excess irradiation, Plant Physiol., 1989, vol. 91, p. 1040. https://doi.org/10.1104/PP.91.3.1040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Cherbadzhi, I.I., Influence of environmental factors on consumption rate of ammonium and orthophosphate by population of the red alga Ahnfeltia tobuchiensis in the Izmeny Bay (Kunashir Island), Izv. Tikhookean. Nauchno-Issled. Inst. Rybn. Khoz. Okeanogr., 2012, vol. 168, p. 203.

    Google Scholar 

  7. Cloern, J.E., Grenz, C., and Vidergar-Lucas, L., An empirical model of the phytoplankton chlorophyll: carbon ratio—the conversion between productivity and growth, Limnol. Oceanogr., 1995, vol. 7, p. 1310. https://doi.org/10.4319/lo.1995.40.7.1313

    Article  Google Scholar 

  8. Dickman, E.M., Vanni, M.J., and Horgan, M.J., Interactive effects of light and nutrients on phytoplankton stoichiometry, Oecologia, 2006, vol. 149, no. 4, p. 676. https://doi.org/10.1007/s00442-006-0473-5

    Article  PubMed  Google Scholar 

  9. Dodds, W.K., Strauss, E.A., and Lehmann, R., Nutrient dilution and removal bioassays to estimate phytoplankton response to nutrient control, Arch. Hydrobiol., 1993, vol. 128, p. 467. https://doi.org/10.1127/archiv-hydrobiol/128/1993/467

    Article  Google Scholar 

  10. Edwards, K.F., Thomas, M.K., Klausmeier, C.A., and Litchman, E., Light and growth in marine phytoplankton: allometric, taxonomic, and environmental variation, Limnol. Oceanogr., 2015, vol. 60, no. 2, p. 540. https://doi.org/10.1002/lno.10033

    Article  Google Scholar 

  11. Falkowski, P.G. and Raven, J.A., Aquatic Photosynthesis, Oxford: Blackwell, 1997, 1st ed.

    Google Scholar 

  12. Finenko, Z.Z. and Lanskaya, L.A., Growth and proliferation rate of algae in limited volumes of water, in Ekologicheskaya fiziologiya morskikh planktonnykh vodoroslei (Ecological Physiology of Marine Planktonic Algae) Kiev: Naukova Dumka, 1971, p. 22.

  13. Finenko, Z.Z., Hoepffner, N., Williams, R., and Piontkovski, S.A., Phytoplankton carbon to chlorophyll a ratio: response to light, temperature and nutrient limitation, Mar. Ecol. J., 2003, vol. 2, no. 2, p. 40.

    Google Scholar 

  14. Flynn, K.J., A mechanistic model for describing dynamic multi-nutrient, light, temperature interactions in phytoplankton, J. Plankton Res., 2001, vol. 23, p. 977. https://doi.org/10.1093/plankt/23.9.977

    Article  Google Scholar 

  15. Gallegos, C.L., Platt, T., Harrison, W.G., and Irwin, B., Photosynthetic parameters of arctic marine phytoplankton: vertical variations and time scales of adaptation, Limnol. Oceanogr., 1983, vol. 28, no. 4, p. 698. https://doi.org/10.4319/LO.1983.28.4.0698

    Article  Google Scholar 

  16. Geider, R.J. and La Roche, J., Redfield revisited: variability of C : N : P in marine microalgae and its biochemical basis, Eur. J. Phycol., 2002, vol. 37, no. 1, p. 1. https://doi.org/10.1017/S0967026201003456

    Article  Google Scholar 

  17. Gevorgiz, R.G. and Shchepachev, S.G., Metodika izmereniya opticheskoi plotnosti suspenzii nizshikh fototrofov na dline volny sveta 750 nm (Measurement of Optical Density of a Suspension of Lower Phototrophs at 750 nm Light Wavelength), Sevastopol: Inst. Biol. Yuzh. Morei, Nats. Akad. Nauk Ukr., 2008.

  18. Glibert, P.M., Primary productivity and pelagic nitrogen cycling, in Nitrogen Cycling in Coastal Marine Environments, New York: Wiley, 1988, p. 3.

    Google Scholar 

  19. Goncharov, A.Yu. and Zotov, A.B., The dependence of the specific production of microalgae on the supply of the cell surface with biogenic elements, Ekol. Morya, 2003, vol. 64, p. 51.

    Google Scholar 

  20. Grasshoff, K., Ehrhardt, M., and Kremling, K., Methods of Seawater Analysis, Basel: Verlag Chemie, 1983.

    Google Scholar 

  21. Han, P., Virtanen, M., Koponen, J., and Straskraba, M., Effect of photoinhibition on algal photosynthesis: a dynamic model, J. Plankton Res., 2000, vol. 22, no. 5, p. 865. https://doi.org/10.1093/PLANKT/22.5.865

    Article  CAS  Google Scholar 

  22. Harrison, P.J. and Hurd, C.L., Nutrient physiology of seaweeds: application of concepts to aquaculture, Cah. Biol. Mar., 2001, vol. 42, nos. 1–2, p. 71.

    Google Scholar 

  23. Jeffrey, S.W. and Humphrey, G.F., New spectrophotometric equations for determining chlorophylls a, b, c 1, and c 2 in higher plants, algae and natural phytoplankton, Biochem. Physiol. Pflanzen., 1975, vol. 167, p. 191. https://doi.org/10.1016/S0015-3796(17)30778-3

    Article  CAS  Google Scholar 

  24. Krivenko, O.V., Content and consumption of inorganic nitrogen compounds in the Black Sea, Morsk. Ekol. Zh., 2008, vol. 12, no. 4, p. 13.

    Google Scholar 

  25. Lee, K.H., Jeong, H.J., Kim, H.J., and Lim, A.S., Nitrate uptake of the red tide dinoflagellate Prorocentrum micans measured using a nutrient repletion method: effect of light intensity, Algae, 2017, vol. 32, no. 2, p. 139. https://doi.org/10.4490/algae.2017.32.5.20

    Article  CAS  Google Scholar 

  26. Levich, A.P., Maksimov, V.N., and Bulgakov, N.G., Teoreticheskaya i eksperimental’naya ekologiya fitoplanktona. Upravlenie strukturoi i funktsiyami soobshchestv (Theoretical and Experimental Ecology of Phytoplankton. Control of the Structure and Functions of Communities), Moscow: NIL, 1997.

  27. Litchman, E., Klausmeier, C.A., Miller, J.R., et al., Multi-nutrient, multi-group model of present and future oceanic phytoplankton communities, Biogeosciences, 2006, vol. 3, p. 585. https://doi.org/10.5194/bg-3-585-2006

    Article  CAS  Google Scholar 

  28. Mineeva, N.M., Stepanova, I.E., and Semadeni, I.V., Biogenic elements and their significance in the development of phytoplankton in reservoirs of the Upper Volga, Inland Water Biol., 2021, vol. 14, no. 1, p. 32. https://doi.org/10.1134/S1995082921010089

    Article  Google Scholar 

  29. Monod, J., Recherches sur la Croissance des Cultures Bactériennes, Paris: Hermann, 1942.

    Google Scholar 

  30. Nishihara, G.N., Terada, R., and Noro, T., Effect of temperature and irradiance on the uptake of ammonium and nitrate by Laurencia brongniartii (Rhodophyta, Ceramiales), J. Appl. Phycol., 2005, vol. 17, no. 5, p. 371. https://doi.org/10.1007/s10811-005-5519-2

    Article  CAS  Google Scholar 

  31. Rosenberg, C. and Ramus, J., Ecological growth strategies in the seaweeds Gracilaria foliifera (Rhodophyceae) and Ulva sp. (Chlorophyceae): soluble nitrogen and reserve carbohydrates, Mar. Biol., 1982, vol. 66, no. 3, p. 251. https://doi.org/10.1007/BF00397030

    Article  Google Scholar 

  32. Sakshaug, E., Andresen, K., and Kiefer, D.A., A steady state description of growth and light absorption in the marine planktonic diatom Skeletonema costatum, Limnol. Oceanogr., 1989, vol. 34, p. 198. https://doi.org/10.4319/lo.1989.34.1.0198

    Article  Google Scholar 

  33. Sarthou, G., Timmermans, K.R., Blain, S., and Treguer, P., Growth physiology and fate of diatoms in the ocean: a review, J. Sea Res., 2005, vol. 53, no. 1, p. 25. https://doi.org/10.1016/j.seares.2004.01.007

    Article  CAS  Google Scholar 

  34. Sathyendranath, S., Stuart, V., Nair, A., et al., Carbon-to-chlorophyll ratio and growth rate of phytoplankton in the sea, Mar. Ecol.: Prog. Ser., 2009, vol. 383, p. 73. https://doi.org/10.3354/meps07998

    Article  CAS  Google Scholar 

  35. Schwaderer, A.S., Yoshiyama, K., de Tezanos Pinto, P., et al., Eco-evolutionary differences in light utilization traits and distributions of freshwater phytoplankton, Limnol. Oceanogr., 2011, vol. 56, no. 2, p. 589. https://doi.org/10.4319/lo.2011.56.2.0589

    Article  Google Scholar 

  36. Shoman, N.Yu., The dynamics of the intracellular contents of carbon, nitrogen, and chlorophyll a under conditions of batch growth of the diatom Phaeodactylum tricornutum (Bohlin, 1897) at different light intensities, Russ. J. Mar. Biol., 2015, vol. 4, no. 5, p. 356. https://doi.org/10.1134/S1063074015050132

    Article  CAS  Google Scholar 

  37. Shoman, N.Yu. and Akimov, A.I., Effect of light and temperature on specific growth rate of diatoms Phaeodactylum tricornutum and Nitzschia sp, no. 3, Morsk. Ekol. Zh., 2013, vol. 12, no. 1, p. 85.

    Google Scholar 

  38. Silkin, V.A. and Khailov, K.M., Bioekologicheskie mekhanizmy upravleniya v akvakul’ture (Bioecological Mechanisms of Control in Aquaculture), Leningrad: Nauka, 1988.

  39. Sinclair, G.A., Kamykowski, D., Milligan, E., and Schaeffer, B., Nitrate uptake by Karenia brevis. I. Influences of prior environmental exposure and biochemical state on diel uptake of nitrate, Mar. Ecol.: Prog. Ser., 2006, vol. 328, p. 117. https://doi.org/10.3354/meps328117

    Article  CAS  Google Scholar 

  40. Smit, A.J., Nitrogen uptake by Gracilaria gracilis (Rhodophyta): adaptations to a temporally variable nitrogen environment, Bot. Mar., 2002, vol. 45, no. 2, p. 196. https://doi.org/10.1515/BOT.2002.019

    Article  CAS  Google Scholar 

  41. Stelmakh, L.V. and Mansurova, I.M., Physiological mechanism of dinoflagellate survivalunder a biogenic limitation, Inland Water Biol., 2021, vol. 14, no. 2, p. 222. https://doi.org/10.1134/S1995082921020140

    Article  Google Scholar 

Download references

Funding

This study was conducted as a part of a topic of State Task of the Federal Research Center Institute of Biology of the Southern Seas no. 121041400077-1 “Functional, Metabolic, and Toxicological Aspects of the Occurrence of Hydrobionts and their Populations in Biotopes with Different Physicochemical Regimes.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Yu. Shoman.

Ethics declarations

Conflict of interest. The authors declare that they have no conflicts of interest.

Statement on the welfare of animals. This article does not contain any studies involving animals performed by any of the authors.

Additional information

Translated by E. Kuznetsova

Abbreviation: Chl a—chlorophyll a; C/Chl a—ratio of carbon to chlorophyll a; Ninit.—initial concentration of nitrogen in culture (nutrient) medium.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shoman, N.Y., Akimov, A.I. Combined Effect of Light Intensity and Nitrogen Concentration in a Medium on the Structural and Functional Characteristics of Microalgae. Inland Water Biol 15, 115–121 (2022). https://doi.org/10.1134/S1995082922020110

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995082922020110

Keywords:

Navigation