Skip to main content
Log in

Polymorphism and gene arrangement among plastomes of ten Epilobium species

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Summary

Plastid DNAs of ten different Epilobium species from four continents have been analysed using the restriction endonucleases BamHI, BglI, BglII, EcoRI, PstI, PvuII and SalI. With respect to the position of cleavage sites of those enzymes, each species has a specific plastome. Fragment patterns of different species from the same continent show a higher degree of similarity than those from different continents. Physical maps of the circular plastid DNA molecule have been constructed for each of the ten species by localising the cleavage sites of the enzymes BglI, PvuII and SalI. As in most other higher plants, the plastid DNA of Epilobium is segmentally organized into two inverted repeats separated by a large and a small single copy region. In heterologous hybridization experiments using radioactively labelled gene probes, the positions of structural genes coding for the rRNAs and for seven polypeptides have been determined. In contrast to its closest relative, Oenothera, the gene arrangement of Epilobium plastomes has the same order as in spinach. This indicates that changes in gene arrangement may be genus-specific and not the result of one or several events affecting all members of a plant family.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

kbp:

kilobase pairs

ptDNA:

plastid DNA

rDNA:

ribosomal DNA

rRNA:

ribosomal RNA

SDS:

sodium dodecyl sulfate

References

  1. Alt J, Herrmann RG: Nucleotide sequence of the gene for pre-apocytochrome f in the spinach plastid chromosome. Curr Gen 8:551–557, 1984.

    Google Scholar 

  2. Bowmann CM, Bonnard G, Dyer TA: Chloroplast DNA variation between species of Triticum and Aegilops. Location of the variation on the chloroplast genome and its relevance to the inheritance and classification of the cytoplasm. Theor Appl Genet 65:247–262, 1983.

    Google Scholar 

  3. Day A, Ellis THN. Chloroplast DNA deletions associated with wheat plants regenerated from pollen: possible basis for maternal inheritance of chloroplasts. Cell 39:359–368, 1984.

    Google Scholar 

  4. Goodspeed TH: The genus Nicotiana. Chron Bot Waltham Mass, 1954.

  5. Gordon KHJ, Crouse EJ, Bohnert HJ, Herrmann RG: Physical mapping of differences in chloroplast DNA of the five wild-type plastomes in Oenothera subsection Euoenothera. Theor Appl Genet 61:373–384, 1982.

    Google Scholar 

  6. Heber U: Stoichiometry of reduction and phosphorylation during illumination of intact chloroplasts. Biochim Biophys Acta 305:140–152, 1973.

    Google Scholar 

  7. Hermann RG: Zur Organisation des Plastoms. Ber Deutsch Bot Ges 97: 335–350, 1984.

    Google Scholar 

  8. Herrmann RG, Westhoff P, Alt J, Winter P, Tittgen J, Bisanz C, Sears BB, Nelson N, Hurt E, Hanska G, Viebrock A, Sebald W: Identification and characterization of genes for polypeptides of the thylakoid membrane. In: Ceferri O, Dure L III, (eds). Structure and function of plant genomes. Plenum Publ Corp, New York/London, pp 143–154, 1983.

    Google Scholar 

  9. Herrmann RG, Whitfeld PR, Bottomley W: Construction of a Sal I/Pst I restriction map of spinach chloroplast DNA using low-gelling-temperature-agarose electrophoresis. Gene 8:179–191, 1980.

    Google Scholar 

  10. Koller B, Delius H: Vicia faba chloroplast DNA has only one set of ribosomal RNA genes as shown by partial denaturation mapping and R-loop analysis. Mol Gen Genet 178:261–269, 1980.

    Google Scholar 

  11. Kung SD, Zhu YS, Chen K, Shen GF, Sisson VA: Nicotiana chloroplast genome II. Chloroplast DNA alteration. Mol Gen Genet 183:20–24, 1981.

    Google Scholar 

  12. Kung SD, Zhu YS, Shen GF: Nicotiana chloroplast genome III. Chloroplast DNA evolution. Theor Appl Gen 61:63–79, 1982.

    Google Scholar 

  13. Laulhere JP, Rozier C: One step extraction of plant nucleic acids. Plant Sci Lett 6:237–242, 1976.

    Google Scholar 

  14. Lawn RM, Fritsch EF, Parker RC, Blake G, Maniatis I: The isolation and characterization of linked δ- and β globin gene from a cloned library of human DNA. Cell 15:1157–1174, 1978.

    Google Scholar 

  15. Palmer JD: Chloroplast DNA exists in two orientations. Nature 301:92–93, 1983.

    Google Scholar 

  16. Palmer JD: Comparative organization of chloroplast genomes. Ann Rev Genet 19:325–354, 1985.

    Google Scholar 

  17. Palmer JD, Singh GP, Pillay DTN: Structure and sequence evolution of three legume chloroplast DNAs. Mol Gen Genet 190:13–19, 1983.

    Google Scholar 

  18. Palmer JD, Stein DB: Chloroplast DNA from the fern Osmunda cinnamonea: physical organization, gene localization and comparison to angiosperm chloroplast DNA. Current Genetics 5:165–170, 1982.

    Google Scholar 

  19. Palmer JD, Thompson WF: Rearrangements in the chloroplast genomes of mung bean and pea. Proc Natl Acad Sci USA 78:5533–5537, 1981.

    Google Scholar 

  20. Palmer JD, Thompson WF: Chloroplast DNA rearrangements are more frequent when a large inverted repeat sequence is lost. Cell 29:537–550, 1982.

    Google Scholar 

  21. Palmer JD, Zamir D: Chloroplast DNA evolution and phylogenetic relationships in Lycopersicon. Proc Natl Acad Sci USA 79:5006–5010, 1982.

    Google Scholar 

  22. Poulsen CR: The barley chloroplast genome: physical structure and transcriptional activity in vivo. Carlsberg Res Commun 48:57–80, 1983.

    Google Scholar 

  23. Przybyl D, Fritzsche E, Edwards K, Kössel H, Falk H, Thompson JA, Link G: The ribosomal RNA genes from chloroplasts of mustard (Sinapis alba L.): mapping and sequencing of the leader region. Plant Mol Biol 3:147–158, 1984.

    Google Scholar 

  24. Raven PH: Generic and sectional delimitation in Onagraceae tribe Epilobiae. Ann Mo Bot Gard 63:326–340, 1976.

    Google Scholar 

  25. Rigby PWJ, Dieckmann M, Rhodes C, Berg P: Labelling deoxyribonucleic acid to high specific activity in vitro by nick translation with Polymerase I. J Mol Biol 113:237–251, 1977.

    Google Scholar 

  26. Salts Y, Herrmann RG, Peleg N, Lavi U, Izhar S, Frankel R, Beckmann JS: Physical mapping of plastid DNA variation among eleven Nicotiana species. Theor Appl Genet 69:1–14, 1984.

    Google Scholar 

  27. Seavey SR, Raven PH: Chromosomal evolution in Epilobium sect. Epilobium (Onagraceae) I. Plant Syst Evol 127:107–120, 1977.

    Google Scholar 

  28. Seavey SR, Raven PH: Chromosomal evolution in Epilobium sect. Epilobium (Onagraceae) II. Plant Syst Evol 128:195–200, 1977.

    Google Scholar 

  29. Seavey SR, Raven PH: Chromosomal evolution in Epilobium sect. Epilobium (Onagracea) III. Plant Syst Evol 130:79–84, 1978.

    Google Scholar 

  30. Southern EM: Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol 98:503–517, 1975.

    Google Scholar 

  31. Stubbe W: Genetische Analyse des Zusammenwirkens von Genom und Plastom bei Oenothera. Z Vererbungsl 90:288–298, 1959.

    Google Scholar 

  32. Tassopulu D, Kung SD: Nicotiana chloroplast genome. 6. Deletion and hot spot — a proposed origin of the inverted repeats. Theor Appl Gen 67:185–193, 1984.

    Google Scholar 

  33. Whitfeld PR, Bottomley W: Organization and structure of chloroplast genes. Ann Rev Plant Physiol 34:279–310, 1983.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schmitz, U.K., Kowallik, K.V. Polymorphism and gene arrangement among plastomes of ten Epilobium species. Plant Mol Biol 7, 115–127 (1986). https://doi.org/10.1007/BF00040138

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00040138

Keywords

Navigation