Skip to main content
Log in

RNA structure and the regulation of gene expression

  • RNA Processing and Stability
  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

RNA secondary and tertiary structure is involved in post-transcriptional regulation of gene expression either by exposing specific sequences or throught the formation of specific structural motifs. An overview of RNA secondary and tertiary structures known from biophysical studies is followed by a review of examples of the elements of RNA processing, mRNA stability and translation of the messenger. These structural elements comprise sense-antisense double-stranded RNA, hairpin and stem-loop structures, and more complex structures such as bifurcations, pseudoknots and triple-helical elements. Metastable structures formed during RNA folding pathway are also discussed. The examples presented are mostly chosen from plant systems, plant viruses, and viroids. Examples from bacteria or fungi are discussed only when unique regulatory properties of RNA structures have been elucidated in these systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams CC, Stern DB: Control of mRNA stability in chloroplasts by 3′ inverted repeats: effects of stem and loop mutations on degradation of psbA mRNA in vitro. Nucl Acids Res 18: 6003–6010 (1990).

    Google Scholar 

  2. Alifano P, Rivellini F, Piscitelli C, Arraiano CM, Bruni CB, Carlomagno MS: Ribonuclease E provides substrates for ribonuclease P-dependent processing of a polycistronic mRNA. Genes Devel 8: 3021–3031 (1994).

    Google Scholar 

  3. Anderson P, Monforte J, Tritz R, Nesbitt S, Hearst J, Hampel A: Mutagenesis of the hairpin ribozyme. Nucl Acids Res 22: 1096–1100 (1994).

    Google Scholar 

  4. van Batenburg FH, Gultyaev AP, Pleij CW: An APL-programmed genetic algorithm for the prediction of RNA secondary structure. J Theor Biol 174: 269–280 (1995).

    Google Scholar 

  5. Baumstark T, Riesner D: Only one of four possible secondary structures of the central conserved region of potato spindle tuber viroid is a substrate for processing in a potato nuclear extract. Nucl Acids Res 23: 4246–4254 (1995).

    Google Scholar 

  6. Bejarano ER, Lichtenstein CP: Expression of TGMV antisense RNA in transgenic tobacco inhibits replication of BCTV but not ACMV geminiviruses. Plant Mol Biol 24: 241–248 (1994).

    Google Scholar 

  7. van Belkum A, Abrahams JP, Pleij CW, Bosch L: Five pseudoknots are present in the 204 nucleotides long 3′ noncoding region of the tobacco mosaic virus RNA: Nucl Acids Res: 7673–7686 (1985).

  8. Betts L, Spremulli L: Analysis of the role of the Shine-Dalgarno sequence and mRNA secondary structure on the efficiency of translational initiation in Euglena gracilis chloroplast atpH mRNA. J Biol Chem 269: 26456–26463 (1964).

    Google Scholar 

  9. Bierley I: Ribosomal frame shifting on viral RNAs. J Gen Virol 76: 1885–1892 (1995).

    Google Scholar 

  10. Branch A, Robertson HD: A replication cycle for viroids and other small infectious RNAs. Science 223: 450–455 (1984).

    Google Scholar 

  11. Brault V, Miller WA: Translational frameshifting mediated by a viral sequence in plant cells. Proc Natl Acad Sci USA 89: 2262–2266 (1992).

    Google Scholar 

  12. Brown JW, Haas ES, Gilbert DG, Pace NR: The Ribonuclease P database. Nucl Acids Res 22: 3660–3662 (1994).

    Google Scholar 

  13. Butcher SE, Burke JM: A photo-cross-linkable tertiary structure motif found in functionally distinct RNA molecules is essential for catalytic function of the hairpin ribozyme. Biochemistry 33: 992–999 (1994).

    Google Scholar 

  14. Camerini-Otero RD, Hsieh P: Parallel DNA triplexes, homologous recombination and other homology dependent DNA interactions. Cell 73: 217–223 (1993).

    Google Scholar 

  15. Cech TR, Self-splicing of group I introns. Annu Rev Biochem 59: 543–568 (1990).

    Google Scholar 

  16. Cech TR, Zaug AJ, Grabowski PJ: The intervening sequence of the ribosomal RNA precursor is converted to a circular RNA in isolated nuclei of Tetrahymena. Cell 23: 486–496 (1981).

    Google Scholar 

  17. Chao MY, Kan MC, Lin-Chao S: RNAII transcribed by IPTG-induced T7 RNA polymerase is non-functional as a replication primer for ColEl-type plasmids in Escherichia coli. Nucl Acids Res 23: 1691–1695 (1995).

    Google Scholar 

  18. Chastein M, Tinoco IJr: Structural elements in RNA. Prog Nucl Acids Res Mol Biol 41: 131–173 (1991).

    Google Scholar 

  19. Chastain M, Tinoco IJr: A base-triple structural domain in RNA. Biochemistry 31: 12733–12741 (1992).

    Google Scholar 

  20. Christopher DA, Hallick RB: Euglena gracilis chloroplast ribosomal protein operon: a new chloroplast gene for ribosomal protein L5 and description of a novel organelle intron category designated group III. Nucl Acids Res 17: 7591–7608 (1989).

    Google Scholar 

  21. Cornelissen M, Vandewiele M: Both RNA level and translation efficiency are reduced by anti-sense RNA in transgenic tobacco. Nucl Acids Res 17: 833–843 (1989).

    Google Scholar 

  22. Crum CJ, Hu J, Hiddinga HJ, Roth DA. Tobacco mosaic virus infection stimulates the phosphorylation of a plant protein associated with double-stranded RNA-dependent protein kinase activity. J Biol Chem 263: 13440–13443 (1988).

    Google Scholar 

  23. Dam E ten, Pleij K, Draper D: Structural and functional aspects of RNA pseudoknots. Biochemistry 31: 11665–11676 (1992).

    Google Scholar 

  24. Danon A, Mayfield SP: ADP-dependent phosphorylation regulates RNA-binding in vitro: implications in light-modulated translation. EMBO J 13: 2227–2235 (1994).

    Google Scholar 

  25. Danon A, Mayfield SPY: Light-regulated translational activators: identification of gene specific mRNA-binding proteins. EMBO J 10: 3993–4001 (1991).

    Google Scholar 

  26. Day MJD, Ashurst JL, Mathias SF, Watts JW, Wilson TMA, Dixon RA: Plant viral leaders influence expression of a reporter gene in tobacco. Plant Mol Biol 23: 97–109 (1993).

    Google Scholar 

  27. Diener TO (ed). The Viroids. Plenum Press, New York (1987).

    Google Scholar 

  28. Diener TO, Hammond RW, Black T, Katze MG: Mechanism of viroid pathogenesis: Differential activation of the interferon-induced, double-stranded RNA activated, Mr 68 000 protein kinase by viroid strains of varying pathogenicity. Biochimie 75: 533–538 (1993).

    Google Scholar 

  29. Dinesh-Kumar SP, Miller WA: Control of start codon choice on a plant viral RNA encoding overlapping genes. Plant Cell 5: 679–692 (1993).

    Google Scholar 

  30. Dinman JD, Icho T, Wickner RB: A-1 ribosomal frameshift in a doublestranded RNA virus of yeast forms a gag-pol fusion protein. Proc Natl Acad Sci USA 88: 174–178 (1991).

    Google Scholar 

  31. Dolfini S, Consonni G, mereghetti M, Tonelli C: Antiparallel expression of the sense and antisense transcripts of maize α-tubulin genes. Mol Gen Genet 241: 161–169 (1993).

    Google Scholar 

  32. Emerick VL, Woodson SA: Self-splicing of the Tetrahymena pre-mRNA is decreased by misfolding during transcription. Biochemistry 32: 14062–14067 (1993).

    Google Scholar 

  33. Felden B, Florentz C, Giége R, Westhof E: Solution structure of the 3′ end of brome mosaic virus genomic RNAs. Conformational mimicry with canonical tRNAs. J Mol Biol 235: 508–531 (1994).

    Google Scholar 

  34. Fontana W, Konings DAM, Stadler PF, Schuster P: Statistics of RNA secondary structures. Biopolymers 33: 1389–1404 (1993).

    Google Scholar 

  35. Forster AC, Davies C, Sheldon CC, Jeffries AC, Symons RH: Self-cleaving viroid and newt RNAs may only be active as dimers. Nature 334: 265–267 (1988).

    Google Scholar 

  36. Fresco JR, Adams A, Ascione R, Henley D, Lindahl T: Tertiary structure in transfer ribonucleis acids. Cold Spring Harbor Symp Quant Biol 31: 527–537 (1966).

    Google Scholar 

  37. Gallie DR: Posttranscriptional regulation of gene expression in plants. Annu Rev Plant Physiol Plant Mol Biol 44: 77–105 (1993).

    Google Scholar 

  38. Gallie DR, Sleat DE, Watts JW, Turner PC, Wilson TMA: A comparison of eukaryotic viral 5′ leader sequences as enhancers of mRNA expression in vivo. Nucl Acids Res 15: 8693–8711 (1987).

    Google Scholar 

  39. Gallie DR, Walbot V: RNA pseudoknot domain of tobacco mosaic virus can functionally substitute for a poly(A) tail in plant and animal cells. Genes Devel 4: 1149–1157 (1990).

    Google Scholar 

  40. Gallie DR, Feder JN, Schimke RT, Walbot V: Functional analysis of the tobacco mosaic virus tRNA-like structure in cytoplasmic gene regulation. Nucl Acids Res 19: 5031–5036 (1991).

    Google Scholar 

  41. Garcia A, Cuin JV, Pleij CWA: Differential response to frame shift signals in eukaryotic and prokaryotic translational systems. Nucl Acids Res 21: 401–406 (1993).

    Google Scholar 

  42. Giége R, Florentz C, Dreher TW: The TYMV tRNA-like structure. Biochimie 75: 569–582 (1993).

    Google Scholar 

  43. Goldschmidt-Clermont M, Girard-Bascou J, Choquet Y, Rochaix R-D: A small chloroplast RNA may be required for trans-splicing in Chlamydomonas reinhardtii. Cell 65: 135–143 (1991).

    Google Scholar 

  44. Green PJ, Pines O, Inouye M: The role of antisense RNA in gene regulation. Annu Rev Biochem 55: 569–597 (1986).

    Google Scholar 

  45. Groeneveld H, Thimon K, van Duin J: Translational control of maturation protein synthesis in phage MS2: A role for the kinetics of RNA folding? RNA 1: 79–88 (1995).

    Google Scholar 

  46. Gultyaev AP, van Batenburg FH, Pleij CW: The computer simulation of RNA folding pathways using a genetic algorithm. J Mol Biol 250: 37–51 (1995).

    Google Scholar 

  47. Gultayaev AP, van Batenberg FHD, Pleij CWA: The influence of a metastable structure in plasmid primer RNA on antisense RNA binding kinetics. Nucl Acids Res 23: 3718–3725 (1995).

    Google Scholar 

  48. Haenni A-L, Joshi S, Chapeville F: tRNA-like structures in the genomes of viruses. Prog Nucl Acid Res Mol Biol 27: 85–104 (1982).

    Google Scholar 

  49. Harris ME, Nolan JM, Malhotra A, Brown JW, Harvey SC, Pace NR. Use of photoaffinity crosslinking and molecular modeling to analyze the global architecture of ribonuclease P RNA. EMBO J 13: 3953–3963 (1994).

    Google Scholar 

  50. Hecker R, Wang Z, Steger G, Riesner R: Analysis of RNA structures by temperature gradient gelelectrophoresis: viroid replication and processing. Gene 72: 59–74 (1988).

    Google Scholar 

  51. Heus H, Pardi A: Structural features that give rise to the unusual stability of RNA hairpins containing GNRA loops. Science 253: 191–194 (1991).

    Google Scholar 

  52. Heinemeyer W, Alt J, Herrmann RG: Nucleotide sequence of the clustered genes for apocytochrom b6 and subunit 4 of the cytochrome b6f complex in the spinach plastid genome. Curr Gen 8: 543–549 (1984).

    Google Scholar 

  53. Hiddinga JH, Crum cJ, Hu J, Roth DA: Viroid-induced phosphorylation of a host protein related to dsRNA-dependent protein kinase. Science 241: 451–453 (1988).

    Google Scholar 

  54. Hildebrandt M, Nellen W: Differential antisense transcription form the EB4 gene locus: implications on the antisensemediated regulation of mRNA stability. Cell 69: 197–204 (1992).

    Google Scholar 

  55. Jacks T, Madhani HD, Masiarz FR, Varmus HE: Signals for ribosomal frameshifting in Rous sarcoma virus gag-pol region. Cell 55: 447–458 (1988).

    Google Scholar 

  56. Jiang C-Z, Kliebenstein D, Ne N, Rodermel S: Destabilization of rbcS sense transcripts by antisense RNA. Plant Mol Biol 25: 569–576 (1994).

    Google Scholar 

  57. Joblin SA, Gehrke L: Enhanced translation of chimeric messenger RNAs containing a plant viral untranslated leader sequence. Nature 325: 622–625 (1987).

    Google Scholar 

  58. Kim KH, Lommel SA: Identification and analysis of the site of −1 ribosomal frameshifting in red clover necrotic mosaic virus. Virology 200: 574–582 (1994).

    Google Scholar 

  59. Kirsch W, Seyer P, Herrmann RG: Nucleotide sequence of the clustered genes for two P700 chlorophyll a apoproteins of the photosystem I reaction center and the ribosomal protein S14 of the spinach plastid chromosome. Curr Genet 10: 843–855 (1986).

    Google Scholar 

  60. Klaff P, Guissem W: A 43 kD light-regulated chloroplast RNA-binding protein interacts with the psbA 5′ untranslated region. Photosyn Res 46: 235–248 (1995).

    Google Scholar 

  61. Koo JS, Spremulli LL: Effect of the secondary structure in the Euglena gracilis chloroplast ribulose-bisphosphate carboxylase/oxygenase messenger RNA on translational initiation. J Biol Chem 269: 7501–7508 (1994).

    Google Scholar 

  62. Kozak M: Context effects and inefficient initiation at non-AUG codons in eukaryotic cell-free translation systems. Mol Cell Biol 9: 507–5080 (1989).

    Google Scholar 

  63. van der Krol AR, Mol JNM, Stuitje AR: Antisense genes in plants: an overview. Gene 72: 45–50 (1988).

    Google Scholar 

  64. Kujawa AB, Drugeon G, Hulanicka D, Haenni A-L: Structural requirements for efficient translational frameshifting in the synthesis of the putative viral RNA-dependent RNA polymerase. Nucl Acids Res 21: 2165–2171 (1993).

    Google Scholar 

  65. Lahser FC, Marsh LE, Hall TC: Contributions of the brome mosaic virus RNA-3 3′-nontranslated region to replication and translation. J Virol 67: 3295–3303 (1993).

    Google Scholar 

  66. Langland JO, Jin S, Bertram BL, Roth DA: Identification of a plant-encoded analog of PKR, the mammalian doublestranded RNA-dependent protein kinase. Plant Physiol 108: 259–1267 (1995).

    Google Scholar 

  67. Lawton MA, Yamamoto RT, Hanks SK, Lamb CJ: Molecular cloning of plant transcripts encoding protein kinase homologs. Proc Natl Acad Sci USA 86: 3140–3144 (1989).

    Google Scholar 

  68. Leathers V, Tanguay R, Kobayashi M, Gallie DR: A phylogenetically conserved sequence within viral 3′ untranslated RNA pseudoknots regulates translation. Mol Cell Biol 13: 5331–5347 (1993).

    Google Scholar 

  69. Loss P, Schmitz M, Steger G, Riesner D: Formation of a thermodynamically metastable structure containing hairpin II is critical for infectivity of potato spindle tuber viroid RNA. EMBO J 10: 719–727 (1991).

    Google Scholar 

  70. Ma CK, Kolesnikow T, Rayner JC, Simons EL, Yim H, Simons RW: Control of translation by mRNA secondary structure: the importance of the kinetics of structure formation. Mol Microbiol 14: 1033–1047 (1994).

    Google Scholar 

  71. Maher LLIII: DNA triple-helix formation: an approach to artificial gene repressors? BioEssays 14: 807–815 (1992).

    Google Scholar 

  72. Maher LLIII: Inhibition of T7 RNA polymerase initiation by triple-helical DNA complexes: a model for artificial gene repression. Biochemistry 31: 7587–7594 (1992).

    Google Scholar 

  73. Marchfelder A, Brennicke A: Characterization and partial purification of tRNA processing activities from potato mitochondria. Plant Physiol 105: 1247–1254 (1994).

    Google Scholar 

  74. Marchfelder A, Brennicke A: Plant mitochondrial RNase P and E. coli RNase P have different substrate specificities. Biochem Mol Biol Int 29: 621–633 (1993).

    Google Scholar 

  75. Martin GB, Brommonschenkel SH, Chunwongse J, Frary A, Ganal MW, Spivey R, Wu T, Earle ED, Tanksley SD: Mapbased cloning of a protein kinase gene conferring disease resistance in tomato. Science 262: 1432–1436 (1993).

    Google Scholar 

  76. Martinez HM: An RNA folding rule. Nucl Acids Res 12: 323–334 (1984).

    Google Scholar 

  77. Matousek J, Schröder ARW, Trnena L, Reimers M, Baumstark T, Dedic P, Vlasak J, Becker I, Kreuzaler F, Fladung M, Riesner D: Inhibition of viroid infection by antisense RNA expression in transgenic plants. Biol Chem Hoppe-Seyler 375: 765–777 (1994).

    Google Scholar 

  78. Matousek J, Trnena L, Oberhauser R, Lichtenstein CP, Nellen W: dsRNA degrading nucleases are differentially expressed in tobacco anthers. Biol Chem Hoppe-Seyler 375: 261–269 (1994).

    Google Scholar 

  79. Mayfield SP, Cohen A, Danon A, Yohn CB: Translation of the psbA mRNA of Chlamydomonas reinhardtii requires a structured RNA element contained within the 5′ untranslated region. J Cell Biol 127: 1537–1545 (1994).

    Google Scholar 

  80. McCaskill: The equilibrium partition function and base pair binding probabilities for RNA secondary structure. Biopolymers 29: 1105–1119 (1990).

    Google Scholar 

  81. Michel F, Westhof E: Modelling of the three-dimensional architecture of group I catalytic introns based on comparative sequence analysis. J Mol Biol 216: 585–610 (1990).

    Google Scholar 

  82. Michel F, Ellington AD, Couture S, Szostak JW: Phylogenetic and genetic evidence for base triples in the catalytic domain of group introns. Nature 347: 578–580 (1990).

    Google Scholar 

  83. Michel F, Janquier A, Dujon B: Comparison of fungal mitochondrial introns reveals extensive homologies in RNA secondary structure. Biochimie 64: 867–881 (1982).

    Google Scholar 

  84. Mironov AA, Dyakonova LP, Kister AE: A kinetic approach to the prediction of RNA secondary structures. J Biomol Struct Dyn 2: 953–962 (1985).

    Google Scholar 

  85. Mironov A, Kister A: RNA secondary structure formation during transcription. J Biomol Struct Dyn 4: 1–9 (1986).

    Google Scholar 

  86. Mironov AA, Lebedev VF: A kinetic model of RNA folding. Biosystems 30: 49–56 (1993).

    Google Scholar 

  87. Mironov AA, Alexandrov NN, Bogodarova NYu, Grigorjev A, Lebedev VF, Lunovskaya LV, Truchan ME, Pevzner PA: DNASUN: a package of computer programs for the biotechnology laboratory: Comput Appl Biosci 11: 331–335 (1995).

    Google Scholar 

  88. Mol JNM, van der Krol AR, van Tunen AJ, van Blokland R, de Lange P, Stuitje AR: Regulation of plant gene expression by antisense RNA. FEBS Lett 268: 427–430 (1990).

    Google Scholar 

  89. Mühlbach HP, Sänger HL: Viroid replication is inhibited by α-Amanitin. Nature 278: 185–188 (1979).

    Google Scholar 

  90. Musters W, Boon K, van der Sande CAFM, van Heerikhuizen H, Planta RJ: Functional analysis of transcribed spacers of yeast ribosomal RNAs. EMBO J 9: 3989–3996 (1990).

    Google Scholar 

  91. Musters W, Planta RJ, van Heerikhuizen H, Raué H: Functional analysis of the transcribed spacers of Saccharomyces cerevisiae ribosomal DNA: it takes a precursor to form a ribosome. In: Hill WE, Dahlberg AE, Garrett RA, Moore RA, Schlessinger PB, Warner JR (eds) The Ribosome: Structure, Function and Evolution, pp. 435–442. American Society for Microbiology, Washington, DC (1990).

    Google Scholar 

  92. Nellen W, Lichtenstein C: What makes an mRNA anti-senseitive? Trends Biochem. Sci 18: 419–423 (1993).

    Google Scholar 

  93. Nues RW, Rientjes JMJ, Morré SA, Mollee E, Planta RJ, Venema J, Raué HA: Evolutionary conserved structural elements are critical for processing of internal transcribed spacer 2 from Saccharomyces cerevisiae precursor ribosomal RNA. J Mol Biol 250: 24–36 (1995).

    Google Scholar 

  94. Oh BK, Pace NR: Interaction of the 3′-end of tRNA with ribonuclease P RNA. Nucl Acids Res 22: 4087–4094 (1994).

    Google Scholar 

  95. Platt T: Transcription termination and the regulation of gene expression. Annu Rev Biochem 55: 339–372 (1986).

    Google Scholar 

  96. Pleij CWA, Reitveld K, Bosch L: A new principle of RNA folding based on pseudoknotting. Nucl Acids Res 13: 1717–1731 (1985).

    Google Scholar 

  97. Pley HW, Flaherty KM, McKay DB: Three-dimensional structure of a hammerhead ribozyme. Nature 372: 68–74 (1994).

    Google Scholar 

  98. Pnueli L, Hareven D, Rounsley SD, Yanofsky MF, Lifschitz E: Isolation of the tomato AGAMOUS gene TAG1 and analysis of its homeotic role in transgenic plants. Plant Cell 6: 163–167 (1994).

    Google Scholar 

  99. Poeschla E, Wong-Staal F: Antiviral and anticancer ribozymes. Curr Opin Oncol 6: 601–606 (1994).

    Google Scholar 

  100. Postel EH, Flint SJ, Kessler DJ, Hogan ME: Evidence that a triplex-forming oligodeoxynucleotide binds to c-myc promotor in HeLa cells, thereby reducing c-myc mRNA levels. Proc Natl Acad Sci USA 88: 8227–8231 (1991).

    Google Scholar 

  101. Powell PA, Stark DM, Sanders PR, Beachy RN: Protection against tobacco mosaic virus in transgenic plants that express tobacco mosaic virus antisense RNA. Proc Natl Acad Sci USA 86: 6949–6952 (1989).

    Google Scholar 

  102. Pürfer D, Tacke E, Schmitz J, Kull B, Kaufmann A, Rhode W: Ribosomal frameshifting in plants: a novel signal directs the — 1 frameshift in the synthesis of the putative viral replicase of potato leafroll luteovirus. EMBO J 11: 1111–1117 (1992).

    Google Scholar 

  103. Puglisi JD, Tan R, Calnan BJ, Frankel AD, Willamson JR: Conformation of the TAR RNA-arginine complex by NMR spectroscopy. Science 257: 76–80 (1992).

    Google Scholar 

  104. Puglisi JD, Wyatt JR, Tinoco I: Conformation of an RNA pseudoknot. J Mol Biol 214: 437–453 (1990).

    Google Scholar 

  105. Pyle AM: Ribozymes: a distinct class of metalloenzymes. Science 261: 709–714 (1993).

    Google Scholar 

  106. Qu F, Heinrich C, Loss P, Steger G, Tien P, Riesner D: Multiple pathways of reversion in viroids for conservation of structural elements. EMBO J 12: 2129–2139 (1993).

    Google Scholar 

  107. Rando RF, DePaolis L, Durland RH, Jayaraman K, Kessler DJ, Hogan ME: Inhibition of T7 and T3 RNA polymerase directed transcription elongation in vitro. Nucl Acids Res 22: 678–685 (1994).

    Google Scholar 

  108. Riesner D: Structure formation of viroids. In: Diener TO (ed) The Viroids, pp. 63–98. Plenum Press, New York (1987).

    Google Scholar 

  109. Riesner D, Henco K, Steger G: Temperature-gradient electrophoresis: a method for analysis of conformational transitions and mutations in nucleic acids and proteins. In: Chrambach A, Dunn MJ, Radola BJ (eds) Advances in Electrophoresis, vol4, pp. 169–250, VCH, Weinheim (1991).

    Google Scholar 

  110. Rietveld K, van Poelgeest R, Pleij CWA, Boom JHvan, Bosch L: The tRNA-like structure at the 3′ terminus of turnip yellow mosaic virus RNA. Differences and similarities with canonical tRNA. Nucl Acids Res 10: 1929–1946 (1982).

    Google Scholar 

  111. Rochaix J-D: Post-transcriptional steps in the expression of chloroplast genes. Annu Rev Cell Biol 8: 1–28 (1992).

    Google Scholar 

  112. Rogers JC: RNA complementary to α-amylase mRNA in barley. Plant Mol Biol 11: 125–138 (1988).

    Google Scholar 

  113. Rosenbaum V, Riesner D: Temperature-gradient gel electrophoresis: thermodynamic analysis of nucleic acids and proteins in purified form and in cellular extracts. Biophys Chem 26: 235–246 (1987).

    Google Scholar 

  114. Roossinck MJ, Sleat D, Palukaitis P: Satellite RNAs of plant viruses: structures and biological effects. Microbiol Rev 56: 265–279 (1992).

    Google Scholar 

  115. Rossi JJ: Practical ribozymes. Making ribozymes work in cells. Curr Biol 4: 469–471 (1994).

    Google Scholar 

  116. Saldanha R, Mohr G, Belfort M, Lambowitz AM: Group I and group II introns. FASEB J 7: 15–24 (1993).

    Google Scholar 

  117. Schindler I-M, Mühlbach HP: Involvement of nuclear DNA-dependent RNA polymerases in potato spindle tuber viroid replication: a reevaluation. Plant Sci 84: 221–229 (1992).

    Google Scholar 

  118. Schmitz M, Steger G: Base-pair probability profiles of RNA secondary structures. Comp Appl Biosci 8: 389–399 (1992).

    Google Scholar 

  119. Schmitz M, Steger G: Description of RNA folding by ‘simulated annealing’. J Mol Biol 255: 254–266 (1996).

    Google Scholar 

  120. Shinozaki K, Ohme M, Tanaka M, Wakasuki T, Hashida N, Matsubayasha T, Zaita N, Chungwongse J, Obokata J, Yamaguchi-Shinozaki K, Otho C, Torazawa K, Meng BY, Sugita M, Deno H, Kamogashira T, Yamada K, Kusuda J, Takaiwa F, Kata A, Todoh N, Shimada H, Sugiura M: The complete nucleotide sequence of the tobacco chloroplast genome; its gene organisation and expression. EMBO J 5: 2043–2049 (1986).

    Google Scholar 

  121. Staub JM, Maliga P: Accumulation of D1 polypeptide in tobacco plastids via the untranslated region of the psbA mRNA. EMBO J 12: 601–606 (1993).

    Google Scholar 

  122. Staub JM, Maliga P: Translation of psbA mRNA is regulated by light via the 5′ untranslated region in tobacco plastids. Plant J 6: 547–553 (1994).

    Google Scholar 

  123. Steger G, Hofmann H, Förtsch J, Gross HJ, Randles JW, Sänger HL, Riesner D: Conformational transitions in viroids and virusoids: comparison of results from energy minimization algorithm and from experimental data. J Biomol Struct Dyn 2: 543–571 (1984).

    Google Scholar 

  124. Steger G, Baumstark T, Mörchen M, Tabler M, Tsagris M, Sänger HL, Riesner D: Structural requirements for viroid processing by RNase T1. J Mol Biol 227: 719–737 (1992).

    Google Scholar 

  125. Stern DB, Gruissem W: Control of plastid gene expression: 3′ inverted repeats act as mRNA processing signals and stabilizing elements, but do not terminate transcription. Cell 51: 1145–1157 (1987).

    Google Scholar 

  126. Stern DB, Radwanski ER, Kindle K: A 3′ stem-loop structure of the Chlamydomonas chloroplast atpB gene regulates mRNA accumulation in vivo. Plant Cell 3: 285–297 (1991).

    Google Scholar 

  127. Sullivan SM: Development of ribozymes for gene therapy. J Invest Dermatol 103: 85–89 (1994).

    Google Scholar 

  128. Symons RH: Ribozymes. Crit Rev Plant Sci 10: 189–234 (1991).

    Google Scholar 

  129. Takamatsu N, Watanabe Y, Meshi T, Okada Y: Mutational analysis of the pseudoknot region in the 3′ noncoding region of tobacco mosaic virus RNA. J Virol 64: 3686–3693 (1990).

    Google Scholar 

  130. Theissen G, Thelen L, Wagner R: Some base substitutions in the leader of Escherichia coli ribosomal RNA operon affect the structure and function of ribosomes-evidence for a transient scaffold function of the rRNA leader. J Mol Biol 233: 203–218 (1993).

    Google Scholar 

  131. Theologis A, Oeller PW, Wong LM, Rottmann WH, Gantz DM: Use of a tomato mutant constructed with reverse genetics to study fruit ripening, a complex developmental process. Devel Genet 14: 282–295 (1993).

    Google Scholar 

  132. Tuschl T, Gohlke C, Jovin TM, Westhof E, Eckstein F: A three-dimensional model for the hammerhead ribozyme based on fluorescence measurements. Science 266: 785–789 (1994).

    Google Scholar 

  133. Varani G, Cheong C, TinocoJr I: Structure of an unusually stable RNA hairpin. Biochemistry 30: 3280–3289 (1991).

    Google Scholar 

  134. Varani G, Wimberly B, TinocoJr I: Conformation and dynamics of an RNA internal loop. Biochemistry 28: 7760–7772 (1989).

    Google Scholar 

  135. Volkmann S, Jendis J, Faruendorf A, Mölling K: Inhibition of HIV-1 reverse transcription by triple-helix forming oligonucleotides with viral RNA. Nucl Acids Res 23: 1204–1212 (1995).

    Google Scholar 

  136. Wagner EGH, Simons RW: Antisense RNA control in bacteria, phages and plasmids. Annu Rev Microbiol 48: 713–742 (1994).

    Google Scholar 

  137. Westhof E, Altman S: Three-dimensional working model of M1 RNA, the catalytic RNA subunit of ribonuclease P from Escherichia coli. Proc Natl Acad Sci USA 91: 5133–5137 (1994).

    Google Scholar 

  138. Westhof E, Dumas P, Moras D: Cristallographic refinement of yeast aspartic acid transfer RNA. J Mol Biol 184: 119–145 (1985).

    Google Scholar 

  139. Westhof E, Romby P, Romaniuk PJ, Ebel J-P, Ehresmann C, Ehresmann B: Computer modeling from solution data of spinach chloroplast and of Xenopus laevis somatic and oocyte 5S rRNAs. J Mol Biol 207: 417–431 (1989).

    Google Scholar 

  140. Westhof E, Michel F: Prediction and experimental investigation of RNA secondary and tertiary folding. In: Nagai K, Mattaj IW (eds) RNA-Protein interactions, pp. 25–51. IRL-Press, Oxford (1994).

    Google Scholar 

  141. Williams AL, Tinoco IJr: A dynamic programming algorithm for finding alternative RNA secondary structures. Nucl Acids Res 14: 299–315 (1986).

    Google Scholar 

  142. Woodson SA, Cech TR: Alternative structures in the 5′ exon affect both forward and reverse self-splicing of the Tetrahymena intervening sequence RNA. Biochemistry 30: 2042–2050 (1991).

    Google Scholar 

  143. Wyatt JR, Puglisi JD, Tinoco I: RNA pseudoknots: stability and loop size requirements. J Mol Biol 214: 455–470 (1990).

    Google Scholar 

  144. Young SL, Krawczyk SH, Matteucci MD, Toole JJ: Triple helix formation inhibits transcription elongation in vitro. Proc Natl Acad Sci USA 88: 10023–10026 (1991).

    Google Scholar 

  145. Zuker M: On finding all suboptimal foldings of an RNA molecule. Science 244: 48–52 (1989).

    Google Scholar 

  146. Zuker M, Stiegler P: Optimal computer folding of large RNA sequences using thermodynamics and auxiliary information. Nucl Acids Res 9: 133–148 (1981).

    Google Scholar 

  147. Zurawski G, Perrot B, Bottomley W, Whitfeld PR: The structure of the gene for the large subunit of the ribulose-1,5-bisphosphate carboxylase from spinach chloroplast DNA. Nucl Acids Res 9: 3251–3270 (1981).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klaff, P., Riesner, D. & Steger, G. RNA structure and the regulation of gene expression. Plant Mol Biol 32, 89–106 (1996). https://doi.org/10.1007/BF00039379

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00039379

Key words

Navigation