Skip to main content
Log in

Some aspects of iron cycling in maritime antarctic lakes

  • Lakes and ponds
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Iron occurs in extremely high concentrations in certain maritime Antarctic freshwater lakes which seasonally develop an anoxic zone. In oligotrophic Sombre Lake the data show that Fe(II) precipitates as Fe(III) oxyhydroxides which bind phosphorus and return it to the sediments. In nutrient-enriched Amos lake, significant quantities of sulphide are also produced and this binds a proportion of the released Fe(II) so reducing the ratio of total iron to phosphorus at the redox boundary where the oxyhydroxides are formed. A proportion of the sediment-released phosphorus therefore reaches the upper waters of this lake (unlike in Sombre Lake) and provides the initial nutrient source for under-ice phytoplankton development in spring. Iron-reducing bacteria have been isolated, from Sombre Lake sediments, which apparently utilise the abundant Fe(III) oxyhydroxides. From thermodynamic considerations (assuming Fe(III) is not limiting) these should outcompete sulphate reducers and methanogens (both previously reported from Sombre and Amos Lakes) and could therefore constitute an important component of the anaerobic mineralisation of organic carbon in such lakes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Brannon, J. M., D. Gunnison, R. M. Smart & R. L. Chen, 1984. Effects of added organic matter on iron and manganese redox systems in sediment. Geomicrobiol. J. 3: 319–341.

    Google Scholar 

  • Balashova, V. V. & G. A. Zavarzin, 1980. Anaerobic reduction of ferric iron by hydrogen bacteria. Microbiology 48: 635–639.

    Google Scholar 

  • Campbell, P. & T. Torgersen, 1980. Maintenance of iron meromixis by iron redeposition in a rapidly flushed monimolimnion. Can. J. Fish. Aquat. Sci. 37: 1303–1313.

    Google Scholar 

  • Coey, J. M. D., D. W. Schindler & F. Weber, 1974. Iron compounds in lake sediments. Can. J. Earth Sci. 11: 1489–1493.

    Google Scholar 

  • Cunningham, C. C. & W. Davison, 1980. An opto-electronic sediment detector and its use in the chemical microprofiling of lakes. Freshwater Biol. 10: 413–418.

    Google Scholar 

  • Davison, W., 1977a. Sampling and handling procedures for polarographic measurements in hypolimnetic water. Freshwater Biol. 7: 393–401.

    Google Scholar 

  • Davison, W., 1977b. The polarographic measurements of O2, Fe2+, Mn2+ and S2− in hypolimnetic water. Limnol and Oceanogr. 22(4): 743–753.

    Google Scholar 

  • Davison, W., 1980. A critical comparison of the measured solubilities of ferrous sulphide in natural waters. Geochim. Cosmochim. Acta. 44: 803–808.

    Google Scholar 

  • Davison, W. & B. J. Finlay, 1986. Ferrous iron and phototrophy as alternative sinks for sulphide in the anoxic hypolimnia of two adjacent lakes. J. Ecol. 74: 663–673.

    Google Scholar 

  • Davison, W. & S. I. Heaney, 1978. Ferrous-iron-sulphide interactions in anoxic hypolimnetic waters. Limnol. Oceanogr. 23: 1194–1200.

    Google Scholar 

  • Davison, W., S. I. Heaney, J. F. Talling & E. Rigg, 1980. Seasonal transformations and movements of iron in a productive English lake with deep water anoxia. Schweiz. Z. Hydrol. 42: 196–224.

    Google Scholar 

  • Davison, W. & G. Seed, 1983. The kinetics of the oxidation of ferrous iron in synthetic and natural waters. Geochim. Cosmochim. Acta. 47: 67–79.

    Google Scholar 

  • Eisenreich, S. J., R. T. Bannerman & D. E. Armstrong, 1975. A simplified phosphorus analysis technique. Environ. Letts. 9(1): 43–53.

    Google Scholar 

  • Ellis-Evans, J. C., 1981a. Freshwater microbiology in the Antarctic I-Microbial numbers and activity in oligotrophic Moss Lake. Brit. Antarct. Surv. Bull. 54: 85–104.

    Google Scholar 

  • Ellis-Evans, J. C., 1981b. Freshwater microbiology at Signy Island, South Orkney Islands, Antarctica. PhD thesis (CNAA) 283 pp.

  • Ellis-Evans, J. C., 1982. Seasonal microbial activity in Antarctic freshwater lake sediments. Polar Biol. 1: 129–140.

    Google Scholar 

  • Ellis-Evans, J. C., 1984. Methane in maritime Antarctic freshwater lakes. Polar Biol. 3: 63–71.

    Google Scholar 

  • Ellis-Evans, J. C., 1985. Decomposition processes in maritime Antarctic lakes. In Seigfreid, W. R., P. R. Condy and R. M. Laws (eds.) Antarctic Nutrient Cycles and Food Webs. Springer Verlag: 253–260.

  • Ellis-Evans, J. C. & M. W. Sanders, 1988. Observations on microbial activity in a seasonally anoxic, nutrient-enriched maritime Antarctic lake. Polar Biol. 8: 311–318.

    Google Scholar 

  • Froelich, P. N., G. P. Klinkhammer, M. L. Bender, N. A. Luedtke, G. R. Heath, D. Cullen, P. Dauphin, D. Hammond, B. Hartman & V. Maynard, 1979. Early oxidation of organic matter in pelagic sediments of the eastern equatorial Atlantic: suboxic diagenesis. Geochim. Cosmochim. Acta. 43: 1075–1090.

    Google Scholar 

  • Gallagher, J. B., 1985. The influence of iron and manganese on nutrient cycling in shallow freshwater Antarctic lakes. In Seigfried, W. R. & R. M. Laws (eds.) Antarctic Nutrient Cycles and Food Webs, Springer Verlag: 234–237.

  • Golterman, H. L., R. S. Clymo & M. A. M. Ohnstad, 1978. Methods for physical and chemical analysis of fresh waters. IBP Handbook No. 8 (2nd ed.). Blackwell: 89–91.

  • Hawes, I., 1985. Factors controlling phytoplankton populations in maritime Antarctic lakes. In Seigfreid, W. R., P. R. Condy & R. M. Laws (eds.) Antarctic Nutrient Cycles and Food Webs. Springer Verlag: 245–252.

  • Herbert, R. A. & C. R. Bell, 1973. Nutrient cycling in freshwater lakes on Signy Island, South Orkney Islands. Brit. Antarct. Surv. Bull. 37: 15–20.

    Google Scholar 

  • Heywood, R. B., 1985. Antarctic inland waters. In Laws, R. M. (ed.) Antarctic Ecology Vol 1 Academic Press: 279–343.

  • Jones, J. G., 1983. A note on the isolation and enumeration of bacteria which deposit and reduce ferric iron. J. Appl. Bact. 54: 305–310.

    Google Scholar 

  • Jones, J. G., 1985. Microbes and microbial processes in sediments. Phil. Trans. R. Soc. Lond. A 315: 3–17.

    Google Scholar 

  • Jones, J. G., S. Gardner & B. M. Simon, 1983. Bacterial reduction of ferric iron in a stratified eutrophic lake. J. Gen. Microbiol. 129: 131–139.

    Google Scholar 

  • Jones, J. G., S. Gardner & B. M. Simon, 1984. Reduction of ferric iron by heterotrophic bacteria in lake sediments. J. Gen. Microbiol. 130: 45–51.

    Google Scholar 

  • Latham, M. J. & M. J. Wolin, 1978. Use of a serum bottle technique to study interactions between strict anaerobes in mixed culture. In Lovelock, D. W. & R. Davies (eds.) Techniques for the Study of Mixed Populations. SAB Technical Series No. 11 Academic Press: 113–124.

  • Lovley, D. R. & M. J. Klug, 1986. Model for the distribution of methane production and sulphate reduction in freshwater sediments. Geochim. Cosmochim. Acta. 50: 11–18.

    Google Scholar 

  • Lovley, D. R. & E. J. P. Philips, 1986a. Organic matter mineralization with reduction of ferric iron in anaerobic sediments. Appl. Environ. Microbiol. 51(4): 683–689.

    Google Scholar 

  • Lovley, D. R. & E. J. P. Philips, 1986b. Availability of ferric iron for microbial reduction in bottom sediments of the freshwater tidal Potomac River. Appl. Environ. Microbiol. 52(4): 751–757.

    Google Scholar 

  • Mayer, L. M., F. P. Liotta & S. A. Norton, 1982. Hypolimnetic redox and phosphorus cycling in hypereutrophic Lake Sebasticook, Maine. Water Res. 16: 1189–1196.

    Google Scholar 

  • Methods for the Examination of Water and Associated Materials, 1983. Iron in raw and potable waters by atomic absorption spectrophotometry. HMSO, London, 20 pp.

    Google Scholar 

  • Molongoski, J. J. & M. J. Klug, 1980. Quantification and characterization of sedimenting particulate organic matter in a shallow hypereutrophic lake. Freshwat. Biol. 10: 497–506.

    Google Scholar 

  • Mortimer, C. H., 1941. The exchange of dissolved substances between mud and water in lakes. I and II. J. Ecol. 29: 280–329.

    Google Scholar 

  • Mortimer, C. H., 1942. The exchange of dissolved substances between mud and water in lakes. III and IV. J. Ecol. 30: 147–201.

    Google Scholar 

  • Munch, J. C. & J. C. G. Ottow, 1982. Effect of cell contact and iron(III) oxide form on bacterial iron reduction. Zeit. Pflanz., Dung. Boden. 145: 66–77.

    Google Scholar 

  • Ottow, J. C. G. & J. C. Munch, 1978. Mechanisms of reductive transformations in the anaerobic microenvironment of hydromorphic soils. In Krumbein, W. E. (ed.) Environmental Biogeochemistry and Geomicrobiology Vol 2. Ann Arbor: 483–491.

  • Sorensen, J., 1982. Reduction of ferric iron in anaerobic, marine sediment and interaction with nitrate and sulphate. Appl. Environ. Microbiol. 43: 319–324.

    Google Scholar 

  • Stumm, W. & J. J. Morgan, 1981. Aquatic Chemistry, 2nd Edition. Wiley 780 pp.

  • Tabatabai, M. A., 1974. Determination of sulphate in water samples. Sulphur Inst. J. 10: 11–13.

    Google Scholar 

  • Talling, J. F., 1973. The application of some electrochemical methods to the measurement of photosynthesis and respiration in freshwater. Freshwater Biol. 3: 335–362.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ellis-Evans, J.C., Lemon, E.C.G. Some aspects of iron cycling in maritime antarctic lakes. Hydrobiologia 172, 149–164 (1989). https://doi.org/10.1007/BF00031618

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00031618

Key words

Navigation