Skip to main content
Log in

Molecular cloning and expression of the gene encoding ADP-glucose pyrophosphorylase from the cyanobacteriumAnabaena sp. strain PCC 7120

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Previous studies have indicated that ADP-glucose pyrophosphorylase (ADPGlc PPase) from the cyanobacteriumAnabaena sp. strain PCC 7120 is more similar to higher-plant than to enteric bacterial enzymes in antigenicity and allosteric properties. In this paper, we report the isolation of theAnabaena ADPGlc PPase gene and its expression inEscherichia coli. The gene we isolated from a genomic library utilizes GTG as the start codon and codes for a protein of 48347 Da which is in agreement with the molecular mass determined by SDS-PAGE for theAnabaena enzyme. The deduced amino acid sequence is 63, 54, and 33% identical to the rice endosperm small subunit, maize endosperm large subunit, and theE. coli sequences, respectively. Southern analysis indicated that there is only one copy of this gene in theAnabaena genome. The cloned gene encodes an active ADPGlc PPase when expressed in anE. coli mutant strain AC70R1-504 which lacks endogenous activity of the enzyme. The recombinant enzyme is activated and inhibited primarily by 3-phosphoglycerate and Pi, respectively, as is the nativeAnabaena ADPGlc PPase. Immunological and other biochemical studies further confirmed the recombinant enzyme to be theAnabaena enzyme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anderson JM, Hnilo J, Larson R, Okita TW, Morell M, Preiss J: The encoded primary sequence of a rice seed ADP-glucose pyrophosphorylase subunit and its homology to the bacterial enzyme. J Biol Chem 264: 12238–12242 (1989).

    PubMed  Google Scholar 

  2. Baecker PA, Furlong CE, Preiss J: Biosynthesis of bacterial glycogen: primary structure ofEscherichia coli B ADP-glucose synthetase as deduced from the nucleotide sequence of theglgC gene. J Biol Chem 258: 5084–5088 (1983).

    PubMed  Google Scholar 

  3. Bhave MR, Lawrence S, Barton C, Hannah LC: Identification and molecular characterization ofShrunken-2 cDNA clones of maize. Plant Cell 2: 581–588 (1990).

    Article  PubMed  Google Scholar 

  4. Böhme H, Haselkorn R: Expression ofAnabaena ferredoxin genes inEscherichia coli. Plant Mol Biol 12: 667–672 (1989).

    Google Scholar 

  5. Brahamsha B, Haselkorn R: Isolation and characterization of the gene encoding the principal sigma factor of the vegetative cell RNA polymerase from the cyanobacteriumAnabaena sp. strain PCC 7120. J Bact 173: 2442–2450 (1991).

    PubMed  Google Scholar 

  6. Burnette WW: Western blotting. Electrophoretic transfer of proteins from SDS-polyacrylamide gels to nitrocellulose and radiographic detection with antibody and radiolabeled protein A. Anal Biochem 112: 195–203 (1981).

    PubMed  Google Scholar 

  7. Carlson CA, Parsons TF, Preiss J: Biosynthesis of bacterial glycogen: Activator-induced oligomeration of a mutantEscherichia coli ADP-glucose synthase. J Biol Chem 251: 7886–7892 (1976).

    PubMed  Google Scholar 

  8. Castenholz RW: Culturing methods for cyanobacteria. Meth Enzymol 167: 68–93 (1988).

    Google Scholar 

  9. Compton T: Degenerate primers for DNA amplification. In: Innis MA et al. (eds) PCR Protocols Chap. 5, pp. 39–45 Academic Press, San Diego (1990).

    Google Scholar 

  10. Copeland L, Preiss J: Purification of spinach leaf ADP-glucose pyrophosphorylase. Plant Physiol 68: 996–1001 (1981).

    Google Scholar 

  11. Dale RMK, Arrow A: A rapid single-stranded cloning, sequencing, insertion, and deletion strategy. Meth Enzymol 155: 204–214 (1978).

    Google Scholar 

  12. Devereux J, Haeberli P, Smithies O: A comprehensive set of sequence analysis programs for the VAX. Nucl Acids Res 12: 387–395 (1984).

    PubMed  Google Scholar 

  13. Fisher R, Tuli R, Haselkorn R: A cloned cyanobacterial gene for glutamine synthetase functions inEscherichia coli, but the enzyme is not adenylated. Proc Natl Acad Sci USA 78: 3393–3397 (1981).

    PubMed  Google Scholar 

  14. Ghosh HP, Preiss J: Adenosine diphosphate glucose pyrophosphorylase: A regulatory enzyme in the biosynthesis of starch in spinach chloroplasts. J Biol Chem 241: 4491–4504 (1966).

    PubMed  Google Scholar 

  15. Iglesias AA, Kakefuda G, Preiss J: Regulatory and structural properties of the cyanobacterial ADP-glucose pyrophosphorylase. Plant Physiol 97: 1187–1195 (1991).

    Google Scholar 

  16. Kakefuda G, Charng YY, Iglesias AA, McIntosh L, Preiss J: Molecular cloning and sequence of ADP-glucose pyrophosphorylase fromSynechocystis PCC 6803. Plant Physiol, 99: 359–361 (1992).

    Google Scholar 

  17. Krishnan HB, Reeves CD, Okita TW: ADP-glucose pyrophosphorylase is encoded by different mRNA transcripts in leaf endosperm of cereals. Plant Physiol 81: 642–645 (1986).

    Google Scholar 

  18. Laemmli UK: Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680–685 (1970).

    PubMed  Google Scholar 

  19. Lee YM, Preiss J: Covalent modification of substrate-binding sites ofEscherichia coli ADP-glucose synthetase. J Biol Chem 261: 1058–1064 (1986).

    PubMed  Google Scholar 

  20. Lin TP, Caspar T, Somerville C, Preiss J: A starch deficient mutant ofArabidopsis thaliana with low ADP-glucose pyrophosphorylase activity lacks one of the two subunits of the enzyme. Plant Physiol 88: 1175–1181 (1988).

    Google Scholar 

  21. Maniatis T, Fritsch EF, Sambrook J: Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (1982).

    Google Scholar 

  22. Mazel D, Houmard J, Casters AM, Tandeau de Marsac N: Highly repetitive DNA sequences in cyanobacterial genomes. J Bact 172: 2755–2761 (1990).

    PubMed  Google Scholar 

  23. Morell MK, Bloom M, Knowles V, Preiss J: Subunit structure of spinach leaf ADP glucose pyrophosphorylase. Plant Physiol 85: 182–187 (1987).

    Google Scholar 

  24. Okita TW, Nakata PA, Anderson JM, Sowokinos J, Morell M, Preiss J: The subunit structure of potato tuber ADPglucose pyrophosphorylase. Plant Physiol 93: 785–790 (1990).

    Google Scholar 

  25. Parsons TF, Preiss J: Biosynthesis of bacterial glycogen: Isolation and characterization of the pyridoxal-P allosteric activator site and ADP-glucose-protected pyridoxal-P binding site ofEscherichia coli B ADP-glucose synthetase. J Biol Chem 253: 7638–7645 (1978).

    PubMed  Google Scholar 

  26. Plaxton WC, Preiss J: Purification and properties of non proteolytic degraded ADPglucose pyrophosphorylase from maize endosperm. Plant Physiol 83: 105–112 (1987).

    Google Scholar 

  27. Porter RD: DNA Transformation. Meth Enzymol 167: 703–712 (1988).

    PubMed  Google Scholar 

  28. Preiss J, Shen L, Greenberg E, Gentner N: Biosynthesis of bacterial glycogen. IV. Activation and inhibition of the adenosine diphosphate glucose pyrophosphorylase ofEscherichia coli B. Biochemistry 5: 1833–1845 (1966).

    PubMed  Google Scholar 

  29. Preiss J: Regulation of the biosynthesis and degradation of starch. Annu Rev Plant Physiol 33: 432–454 (1982).

    Article  Google Scholar 

  30. Preiss J: Bacterial glycogen synthesis and its regulation Annu Rev Microbiol 38: 419–458 (1984).

    Article  PubMed  Google Scholar 

  31. Preiss J: Biosynthesis of starch and its regulation. In: Preiss J (ed) The Biochemistry of Plants, vol 14. Carbohydrates, pp. 184–249. Academic Press, San Diego (1988).

    Google Scholar 

  32. Preiss J, Danner S, Summers PS, Morell M, Bloom CR, Yang L, Neider M: Molecular characterization of theBrittle-2 gene effect of maize endosperm ADPglucose pyrophosphorylase subunits. Plant Physiol 92: 881–885 (1990).

    Google Scholar 

  33. Preiss J: Biology and molecular biology of starch synthesis and its regulation. In: Mifflin B (ed) Oxford Surveys of Plant Molecular and Cell Biology, vol 7, pp. 59–114. Oxford University Press, Oxford (1991).

    Google Scholar 

  34. Rosenberg M, Court D: Regulatory sequences involved in the promotion and termination of RNA transcription. Annu Rev Genet 13: 319–353 (1979).

    Article  PubMed  Google Scholar 

  35. Sanger F, Nicklen S, Coulson AR: DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74: 5463–5467 (1977).

    PubMed  Google Scholar 

  36. Scharf SJ: Cloning with PCR. In: Innis MA et al. (eds) PCR Protocols Chap. 11, pp. 84–91 Academic Press, San Diego (1990).

    Google Scholar 

  37. Shively JM: Inclusions: Granules of polyglucose, polyphosphate, and poly-β-hydroxybutyrate. Meth Enzymol 167: 195–203 (1988).

    Google Scholar 

  38. Smith PK, Krohn RI, Hermanson GT, Mallia AK, Gartner FH, Provenzano MD, Fujimoto EK, Geoke NM, Olson BJ, Klenk DC: Measurement of protein using bicinchoninic acid. Anal Biochem 150: 76–85 (1985).

    PubMed  Google Scholar 

  39. Smith-White BJ, Preiss J: Comparison of proteins of ADP-glucose pyrophosphorylase from diverse sources. J Mol Evol, 34: 449–464 (1992).

    PubMed  Google Scholar 

  40. Southern EM: Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol 98: 503–517 (1975).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Charng, Yy., Kakefuda, G., Iglesias, A.A. et al. Molecular cloning and expression of the gene encoding ADP-glucose pyrophosphorylase from the cyanobacteriumAnabaena sp. strain PCC 7120. Plant Mol Biol 20, 37–47 (1992). https://doi.org/10.1007/BF00029147

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00029147

Key words

Navigation