Skip to main content
Log in

Rotifers in aging research: use of rotifers to test various theories of aging

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Four theories of aging are discussed to examine how effectively they might explain the aging process in rotifers. One of the early theories, the rate of living theory of aging can perhaps be discounted. Although the theory predicts that increased biological energy expenditure, in the form of increased activity or reproduction, would lead to a shorter lifespan, these predictions are not born out by experimental evidence. At the whole animal level, a case can be made for a theory of programmed aging, where the end of reproduction signals the end of the lifespan. Support for this view comes from the observation that lifespan is positively correlated with reproductive parameters, that treatments that extend lifespan usually act to extend the reproductive period, and that the end of reproduction is associated with high mortality and senescent biochemical changes. Two molecular theories of aging are also discussed; the free radical theory of aging and the calcium theory of aging. These theories point to the fact that molecular damage accumulates and that calcium influx increases in the course of aging. When free radical buildup or calcium homeostasis is reduced, lifespan is extended. A molecular explanation of aging does not necessarily exclude the idea of programmed aging. It is probable that an eventual understanding of the aging process will rest on both a physiological and molecular basis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arking, R. & S. P. Dudas, 1989. Review of genetic investigations into the aging process of Drosophila. J. Am. Geriatr. Soc. 37: 757–773.

    PubMed  Google Scholar 

  • Barrows, C. H. & G. C. Kokkonen, 1985. Rotifers. In: Non-mammalian models for research on aging. Interdisipl. Topics Geront. 21: 188–200.

  • Beauvais, J. E. & H. E. Enesco, 1985. Lifespan and agerelated changes in activity level of the rotifer Asplanchna brightwelli: influence of curare. Exp. Gerontol. 20: 359–366.

    PubMed  Google Scholar 

  • Begon, M. & M. Mortimer, 1986. Population ecology, 2nd ed. Sinauer Associates, Sunderland, Mass. 220 pp.

    Google Scholar 

  • Bell, G., 1984. Measuring the cost of reproduction I. The correlation structure of the life table of a plankton rotifer. Evolution 38: 300–313.

    Google Scholar 

  • Bell, G., 1986. Reply to Reznick et al. Evolution 10: 1344–1346.

    Google Scholar 

  • Bell, G. & V. Koufopanou, 1986. The cost of reproduction. Oxford Surveys of Evolutionary Biology, Vol. 3, Oxford University Press, Oxford, U.K.: 83–131.

    Google Scholar 

  • Bernstein, C. & H. Bernstein, 1991. Aging, sex and DNA repair. Academic Press, N.Y. 382 pp.

    Google Scholar 

  • Bozovic, V. & H. E. Enesco, 1986. Effects of antioxidants on rotifer lifespan and activity. Age 9: 41–45.

    Google Scholar 

  • Bozovic, V. & H. E. Enesco, 1989. Cortisone extends lifespan in the rotifer Asplanchna brightwelli. Arch. Gerontol. Geriatr. 9: 45–51.

    PubMed  Google Scholar 

  • Campbell, K. P., A. T. Leung, & A. H. Sharp, 1968. The biochemistry and molecular biology of the dihydropyrididnesensitive calcium channel. Trends in neuroscience. 10: 425–430.

    Google Scholar 

  • Carafoli, E., 1987. Intracellular calcium homeostasis. Ann. Rev. Biochem. 56: 395–433.

    Article  PubMed  Google Scholar 

  • Carmona, M. J., A. Serra, & M. R. Miracle, 1989. Protein patterns in rotifers: the timing of aging. In C. Ricci, T. W. Snell & C. E. King (eds), Rotifer Symposium V. Developments in Hydrobiology 52. Kluwer Academic Publishers, Dordrecht: 325–330. Reprinted from Hydrobiologia 186/187.

    Google Scholar 

  • Carmona, M. J., M. Serra & M. R. Miracle, 1992. Relationships between mixis in Brachionus plicatilis and preconditioning of culture medium by crowding. Proceedings of VI International Rotifer Symposium, Banyoles, Spain.

  • Comfort, A., 1979. The biology of senescence, 3rd edn. Elsevier North Holland, N.Y., 414 pp.

    Google Scholar 

  • Enesco, H. E., V. Bozovic & P. D. Anderson, 1989. The relationship between lifespan and reproduction in the rotifer Asplanchna brfghtwelli. Mech. Ageing Dev. 48: 281–289.

    Article  PubMed  Google Scholar 

  • Enesco, H. E. & D. Mahoney, 1981. Age related decrease in nuclear and nucleolar size in hypodermal cells of the rotifer. Exp. Geront. 16: 41–45.

    Google Scholar 

  • Enesco, H. E., A. McTavish & R. Garberi, 1990. Spontaneous activity level and lifespan in rotifers: Lack of support for the rate of living theory. Gerontology 36: 256–261.

    PubMed  Google Scholar 

  • Enesco, H. E. & C. Verdone-Smith, 1980. α-Tocopherol increases lifespan in the rotifer Philodina. Exp. Geront. 15: 335–338.

    Article  Google Scholar 

  • Enesco, H. E., A. Wolanskyj & M. Sawada, 1988. Effect of copper on lifespan and lipid peroxidation in rotifers. Age. 12: 19–23.

    Google Scholar 

  • Epp, R. W. & W. M. Lewis, Jr., 1984. Cost and speed of locomotion in rotifers. Oecologia 61: 289–292.

    Google Scholar 

  • Fanestil, D. D. & C. H. Barrows, 1965. Aging in the rotifer. J. Gerontol. 20: 462–469.

    PubMed  Google Scholar 

  • Finch, C. E., 1990. Longevity, senescence and the genome. Univ. Chicago Press, Chicago 922 pp.

    Google Scholar 

  • Gilbert, J. J. & A. Thompson, 1968. Alpha tocopherol control of sexuality and polymorphism in the rotifer Asplanchna. Science 159: 734–736.

    PubMed  Google Scholar 

  • Gilbert, J. J., 1973. Induction and ecological significance of gigantism in the rotifer Asplanchna sieboldi. Science 181: 63–66.

    Google Scholar 

  • Gilbert, J. J., 1974. Effect of tocopherol on the growth and development of rotifers. Am. J. Clin. Nutr. 27: 1005–1016.

    PubMed  Google Scholar 

  • Harman, D., 1956. Aging: a theory based on free-radicals and radiation chemistry. J. Gerontol. 11: 298–300.

    PubMed  Google Scholar 

  • Hart, R. W. & A. Turturro, 1983. Theories of aging. In Review Biol. Aging Research. 1: 5–17, Alan R. Liss Inc., N.Y.

    Google Scholar 

  • Herold, R. C. & N. D. Meadow, 1970. Age related changes in ultrastructure and histochemistry of rotiferan organs. J. Ultrastruct. Res. 33: 203–218.

    PubMed  Google Scholar 

  • Jennings, H. S. & R. S. Lynch, 1928. Age, mortality, fertility and individual diversity in the rotifer Proales sordida Gosse. J. exp. Zool. 51: 339–381.

    Google Scholar 

  • Khachaturian, Z. S., 1987. Hypothesis on the regulation of cytosol calcium concentrations and the aging brain. Neurobiol. Aging 8: 345–346.

    PubMed  Google Scholar 

  • Khachaturian, Z. S., 1989. The role of calcium regulation in brain aging: reexamination of a hypothesis. Aging 1: 17–34.

    PubMed  Google Scholar 

  • King, C. E., 1969. Experimental studies on ageing in rotifers. Exp. Gerontol. 4: 63–79.

    PubMed  Google Scholar 

  • King, C. E. & M. R. Miracle, 1980. A perspective on aging in rotifers. In H. J. Dumont & J. Green (eds), Rotatoria. Developments in Hydrobiology I. Dr W. Junk Publishers, The Hague: 13–19. Reprinted from Hydrobiologia 73.

    Google Scholar 

  • King, C. E., 1982. The evolution of life span. In H. Dingle & J. P. Hegmann (eds), Evolution and genetics of life histories, Springer-Verlag, N.Y.: 121–138.

    Google Scholar 

  • King, C. E., 1983. A re-examination of the Lansing Effect. In B. Pejler, R. Starkweather & Th. Nogrady (eds), Biology of Rotifers. Developments in Hydrobiology 14. Dr W. Junk Publishers, The Hague: 135–139. Reprinted from Hydrobiologia 104.

    Google Scholar 

  • Lansing, A. I., 1942. Some effects of hydrogen ion concentration, total salt concentration, calcium and citrate on longevity and fecundity in the rotifer. J. exp. Zool. 91: 195–211.

    Google Scholar 

  • Lansing, A. I., 1964. Age variations in the cortical membranes of rotifers. J. Cell. Biol. 23: 403–422.

    PubMed  Google Scholar 

  • Lints, F. A., 1989. The rate of living theory revisited. Gerontology 35: 36–57.

    PubMed  Google Scholar 

  • Litton, J. R., 1987. Specificity of the α-tocopherol (Vitamin E) effect on lifespan and fecundity of bdelloid rotifers. In L. May R. Wallace & A. Herzig (eds), Rotifer Symposium IV. Developments in Hydrobiology 42. Dr. W. Junk Publishers, Dordrecht: 135–139. Reprinted from Hydrobiologia 147.

    Google Scholar 

  • Loeb, J. & H. H. Northrop, 1917. On the influence of food and temperature on the duration of life. J. Biol. Chem. 32: 102–121.

    Google Scholar 

  • Makman, M. H. & G. B. Stefano, 1984. Murine muscles and cephalopods as models for study of neuronal aging. In D. H. Mitchel & T. E. Johnson (eds), Invertebrate Models in Aging Research. CRC Press, Boca Raton: 165–189.

    Google Scholar 

  • McTavish, A., M. Sawada & H. E. Enesco, 1990. Nifedipine influences rotifer lifespan: Studies on the calcium theory of aging. Age 13: 65–71.

    Google Scholar 

  • Meadow, N. D. & C. H. Barrows, 1971. Studies on ageing in a bdelloid rotifer. Il. The effects of various environmental conditions and maternal age on longevity and fecundity. J. Gerontol. 26: 302–309.

    PubMed  Google Scholar 

  • Pearl, R., 1928. The rate of living. Knopf, N.Y. 235 pp.

    Google Scholar 

  • Plate, L., 1886. Beiträge zur Naturgeschichte der Rotatorien. Jena z.f. Naturwiss. 19: 1–120.

    Google Scholar 

  • Reznick, D., 1985. Costs of reproduction: An evaluation of the empirical evidence. Oikos 44: 257–267.

    Google Scholar 

  • Reznick, D. N., E. Perry & J. Travis, 1986. Measuring the cost of reproduction: A comment on papers by Bell. Evolution 40: 1338–1344.

    Google Scholar 

  • Rosseter, T. B., 1884. Observation on the life history of Sephanoceros eichhomii. J.r. micros. Soc. 4: 80–84.

    Google Scholar 

  • Rougier, C. & R. Pourriot, 1977. Aging and control of reproduction in Brachionus calycifiorus (Pallas) (Rotatoria). Exp. Geront. 12: 137–151.

    Google Scholar 

  • Sawada, M. & J. C. Carlson, 1985. Association of lipid peroxidation during luteal regression in the rat and natural aging in the rotifer. Exp. Geront. 20: 179–186.

    Google Scholar 

  • Sawada, M. & J. C. Carlson, 1987. Association between lipid peroxidation and life-modifying factors in rotifers. J. Geront. 42: 451–456.

    PubMed  Google Scholar 

  • Sawada, M. & J. C. Carlson, 1990. Biochemical changes associated with the mechanism controlling superoxide radical formation in the aging rotifer. J. Cellular Biochem. 44: 153–165.

    Google Scholar 

  • Sawada, M., J. C. Carlson, & H. E. Enesco, 1990. The effects of UV radiation and antioxidants on lifespan and lipid peroxidation in the rotifer Asplanchna brightwelli. Arch. Gerontol. Geriatr. 10: 27–36.

    PubMed  Google Scholar 

  • Sawada, M. & H. E. Enesco, 1984a. Vitamin E extends the lifespan of the short-lived rotifer Asplanchna brightwelli. Exp. Geront. 19: 179–183.

    Google Scholar 

  • Sawada, M. & H. E. Enesco, 1984b. A study of dietary restriction and lifespan in the rotifer Asplanchna brightwelli monitored by chronic neutral red exposure. Exp. Geront. 19: 329–334.

    Google Scholar 

  • Schneider, E. L., 1987. Theories of aging: A perspective. In H. R. Warner, R. N. Butler, R. L. Sprott & E. L. Schneider. Modern Biological Theories of Aging, Raven Press, New York: 1–4.

    Google Scholar 

  • Service, P. M., 1989. The effect of mating status on lifespan, egg laying and starvation resistance in Drosophila melanogaster in relation to selection on longevity. J. Insect Physiol. 35: 447–452.

    Google Scholar 

  • Sincock, A. M. 1974. Calcium and aging in the rotifer Mytilina brevispina var redunca. J. Gerontol. 29: 514–517.

    PubMed  Google Scholar 

  • Sincock, A. M. 1975. Life extension in the rotifer Mytilina brevispina var redunca by the application of chelating agents. J. Gerontol. 30: 289–293.

    PubMed  Google Scholar 

  • Snell, T. W., J. Childress & B. C. Winkler, 1988. Characteristics of the mate recognition factor in the rotifer Brachionus plicatilis. Comp. Biochem. Physiol. 89A: 481–485.

    Google Scholar 

  • Snell, T. W. & C. E. King, 1977. Lifespan and fecundity patterns in rotifers: The cost of reproduction. Evolution 31: 882–890.

    Google Scholar 

  • Snell, T. W. & M. A. Nacionales, 1990. Sex pheromone communication in Brachionus plicatilis (Rotifera). Comp. Biochem. Physiol. 97 A: 221–216.

    Google Scholar 

  • Spemann, F. W., 1924. Uber Lebensdauer. Altem and andere Fragen der Rotatorien — Biologie. Z. Wiss. Zool. 123: 136.

    Google Scholar 

  • Stemberger, R. S. & J. J. Gilbert, 1987. Rotifer threshold food concentrations and the size-efficiency hypothesis. Ecology 68: 181–187.

    Google Scholar 

  • Trump, B. F., I. K. Berezesky, T. Sato, K. V. Laiho, P. C. Phelps & N. Declaris, 1984. Cell calcium, cell injury and cell death. Envir. Health Perspec. 57: 281–287.

    Google Scholar 

  • Uchiyama, M. & M. Mihara, 1978. Determination of malonaldehyde precursor in tissues by the thiobarbituric acid test. Analyt. Biochem. 86: 271–278.

    PubMed  Google Scholar 

  • Verdone-Smith, C., 1981. The effects of temperature and dietary restriction on aging and reproductive patterns in the rotifer Asplanchna brightwelli, Gosse. M. Sc. thesis, Concordia University, Montreal.

    Google Scholar 

  • Verdone-Smith, C. & H. E. Enesco, 1982. The effect of temperature and of dietary restriction on lifespan and reproduction in the rotifer Asplanchna bnghtwelli. Exp. Geront. 17: 255–262.

    Google Scholar 

  • Weindruch, R. & R. L. Walford, 1988. The retardation of aging and disease by dietary restriction.Charles C. Thomas, Springfield, Ill., 436 pp.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Enesco, H.E. Rotifers in aging research: use of rotifers to test various theories of aging. Hydrobiologia 255, 59–70 (1993). https://doi.org/10.1007/BF00025821

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00025821

Key words

Navigation