Skip to main content
Log in

The diversity of drought adaptation in the wide

  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Life on the earth is highly dependent on the properties and functions of water. In front of water limitation, herbaceous, woody and epiphyte plants have developed a wide diversity of drought tolerance mechanisms at the molecular, metabolic and physiological levels. The strategies of adaptation to drought have been listed in regard of the level of organization: molecules, cells, whole plant. Root development and water uptake, transpiration and micro- and macromorphological adaptations, and water status and osmotic adjustment have important consequences on drought adaptation. The relationship between these characters and mechanisms and the productivity of cultivated plants are the basis of the breeding for drought tolerance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ali Dib T and Monneveux P (1992) Adaptation à la sécheresse et notion d'idéotype chez le blé dur. I. Caractères morphologiques d'enracinement. Agronomie 12: 1–379

    Google Scholar 

  2. Ali Dib T, Monneveux P and Araus JL (1992) Adaptation à la sécheresse et notion d'idéotype chez le blé dur. I. Caractères physiologiques d'adaptation. Agronomie 12: 381–393

    Google Scholar 

  3. Araus JL, Alegre L, Ali Dib T, Benlarbi M and Monneveux P (1991) Epidermal and stomatal conductance in seedlings of durum wheat landraces and varieties. In: E Acevedo, A Conesa, P Monneveux and JP Srivastava (eds) Physiology—Breeding of Winter Cereals for Stressed Mediterranean Environments, Colloques de l'INRA, no 55, pp 225–242. Paris

  4. Armenta-Soto J, Chang TT, Loreto GC and O'Toole JC (1983) Genetic analysis of root characters in rice. SABRAO J 15: 103

    Google Scholar 

  5. Barbour NW and Murphy CF (1984) Field evaluation of seeding root length selection in oats. Crop Sci 24: 165

    Google Scholar 

  6. Belhassen E, This D and Monneveux P (1995) L'adaptation génétique face aux contraintes de secheresse. Cahiers de l'Agriculture 4: 251–261

    Google Scholar 

  7. Belhassen E, Castiglioni V, Chimenti C, Griveau Y, Jamaux I and Steinmetz A (1996) Looking for physiological and molecular markers of leaf cuticular transpiration using interspecific crosses between Helianthus argophyllus and Helianthus annuus. Drought tolerance in sunflower, Beijing (P.R. China), 14 June 1996. Ed A Pouzet. ISA publisher, Vol II, 39–44

  8. Binet M and Brunel JP (1967) Physiologie végétale. Volume 1. Ed. Doin.

  9. Blum A, Arkin GF and Jordan WR (1977a) Sorghum root morphogenesis and growth. I. Effect of maturity genes. Crop Sci 17: 149

    Google Scholar 

  10. Blum A, Jordan WR and Arkin GF (1977b) Sorghum root morphogenesis and growth. II. Manifestation of heterosis. Crop Sci 17: 153

    Google Scholar 

  11. Boyer JS (1995) Biochemical and biophysical aspects of water deficits and the predisposition disease. Annu Rev Phyotpathol 33: 251–274

    Article  Google Scholar 

  12. Brown SC, Gregory PJ and Wahbi A (1987) Root characteristics and water use in mediterranean environments. In: Srivastava JP, Porccedu E, Acevedo E and Varma S (eds) Drought Tolerance in Winter Cereals, p 275. New York, USA: John Wiley and Sons

    Google Scholar 

  13. Canny MJ (1995) Apoplastic water and solute movement: New rules for an old space. Annu Rev Plant Mol Biol 46: 215–236

    Article  Google Scholar 

  14. Chandler PM and Robertson M (1994) Gene expression regulated by abscisic acid and its relation to stress tolerance. Annu Rev Plant Mol Biol 45: 113–141

    Article  Google Scholar 

  15. Cornish PS (1981) Resistance to water flow in the intracoleoptile internode of wheat. Plant and Soil 59: 119

    Google Scholar 

  16. Denna DW (1970) Transpiration and the waxy bloom of Brassica oleracea L.. Aust J Biol Sci 23: 27

    Google Scholar 

  17. Ekanayake IJ, O'Toole JC, Garrity DP and Masajo TM (1985) Inheritance of root characters and their relations to drought resistance in rice. Crop Sci 25: 924

    Google Scholar 

  18. Erskine W and Muhlbauer FJ (1991) Allozyme and morphological variability, outcrossing rate and core-collection formation in lentil germplasm. TAG 83: 119

    Google Scholar 

  19. Febrero A, Vendrell P, Alegre L and Araus JL (1991) Epidermal conductance in flag leaves and ears of several durum wheat landraces and varieties: Morphological and anatomical characteristics involved. In: E Acevedo, A Conesa, P Monneveux and JP Srivastava (eds) Physiology—Bleeding of Winter Cereals for Stressed Mediterranean Environments, Colloques de l'INRA, no 55, pp 143–157. Paris

  20. Fischer KS, Johnson EC and Edmeades GO (1976) Breeding and selection for drought resistance in tropical maize. Centre Internacional de Mejoramiento de Mais y Trigo 28

  21. Gioda A, Acosta Baladon A, Fontanel P, Hernandez Martinez Z and Santos A (1993) L'arbre fontaine. La recherche 249, 23: 1400–1406

    Google Scholar 

  22. Gul A and Allan RE (1978) Inheritance of subcrown internode length, crown deepth, and crown-tissue regrowth in winter wheat cross. Crop Sci 18: 338

    Google Scholar 

  23. Hurd EA (1974) Phenotype and drought tolerance in wheat. Agric Met 14: 39

    Article  Google Scholar 

  24. Irvine RB, Harvey BL and Rossnagel BG (1980) Rooting capabilities as it relates to soil moisture extraction and osmotic potential of semi-dwarf and normal statured genotypes of six-rowed barley. Can J Plant Sci 60: 241

    Google Scholar 

  25. Jones HG (1992) Plants and Mircoclimate. A Quantitative Approach to Environmental Plant Physiology. Second edition. Cambridge, UK: Cambridge University Press

    Google Scholar 

  26. Khaldoun A, Chery J and Monneveux P (1990) Etude des caractères d'enracinement et leur rôle dans l'adaptation au déficit hydrique chez l'orge (Hordeum vulgare L.). Agronomie 10: 369–379

    Google Scholar 

  27. Larsson S and Svenningson M (1986) Cuticular transpiration and epiculticular lipids of primary leaves of barley (Hordeum vulgare). Physiol Plant 68: 13

    Google Scholar 

  28. Levitt J (1980) Response of Plants to Environmental Stresses. Chilling, Freezing, and High Temperatures Stresses. New York, USA: Academic Press. 497 pp

    Google Scholar 

  29. Mc Gowan M and Tzimas E (1985) Water relations of winer wheat: The root system, petiolar resistance and development of root abstraction equation. Exp Agric 21

  30. Morgan JM (1983) Osmoregulation as a metabolism criterion for drought tolerance in wheat. Aust J Agric Res 34: 607–614

    Google Scholar 

  31. Morgan JM and Condon AG (1986) Water use, grain yield and osmoregulation in wheat. Aust J Plant Physiol 13: 523–532

    Google Scholar 

  32. Murphy CF and Nelson LA (1982) Variability of seedling growth characteristics among oat genotypes. Crop Sci 22: 1005

    Google Scholar 

  33. Nobel PS (1991) Physicochemical and Environmental Plant Physiology. New York, USA. Academic Press

    Google Scholar 

  34. O'Brien L (1979) Genetic variability of root growth in wheat (Triticum aestivum L.). Aust J Agric Res 30: 587

    Google Scholar 

  35. Osmond CB, Winter K and Powels SB (1980) Adaptative significance of carbon dioxide cycling during photosynhesis in water-stressed plants. In: Turner NC and Kramer PJ (eds) Adapation of Plants to Water and High Temperature Stresses. New York, USA: Wiley Inersciences

    Google Scholar 

  36. Passioura JB (1972) The effect of root geometry on the yield of wheat growing on stored water. Aust J Agri Res 23: 745

    Google Scholar 

  37. Passioura JB (1974) The effect of root geometry on the water relations of temperate cereals (wheat, barley, oat). In: Kolek J (ed) Structure and Function of Primary Root Tissue p 357. Bratislava, Slovakia

  38. Possingham JV, Chambers TC and Radler F (1967) Cuticular transpiration and wax structure and composition of leaves and fruits of Vitis vinifera. Aust J Biol Sci 40: 1149

    Google Scholar 

  39. Richards RA and Passioura JB (1981) Seminal root morphology and water use of wheat. II. Genetic variation. Crop Sci 21: 253

    Google Scholar 

  40. Richards RA (1987) Physiology and the breeding of winter-grown cereals for dry areas. In: Srivastava JP, Porceddu E, Acevedo E and Warna S (eds) Drought Tolerance in Winter Cereals, pp 133–150. New York, USA: John Libbey

    Google Scholar 

  41. Schonherr J (1976) Water permeability of isolated cuticular membranes: the effect of cuticular waxes on diffusion of water. Planta 131: 159

    Google Scholar 

  42. Sinha SK and Khanna R (1975) Physiological, biochemical and genetic basis of heterosis. Adv Agron 27: 123

    Google Scholar 

  43. Taylor HM and Klepper B (1978) The role of rooting characteristics in the supply of water to plants. Adv Agron 30: 99

    Google Scholar 

  44. Zimmermann MH and Brown CR (1971) Trees, Structure and Function. Berlin, Germany: Springer Verlag

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Monneveux, P., Belhassen, E. The diversity of drought adaptation in the wide. Plant Growth Regul 20, 85–92 (1996). https://doi.org/10.1007/BF00024004

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00024004

Keywords

Navigation