Skip to main content
Log in

Nutrient metabolism (C, N, P, and Si) in the trophogenic zone of a meromictic lake

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

The dynamics of seston and dissolved elements in a meromictic lake with high concentrations of manganese and iron in the monimolimnion were studied through an annual cycle. This publication presents results for assimilation, sedimentation and recovery of nutrients (C, N, P, and Si) in the trophogenic zone. Phosphorus deficiency kept the productivity of the diatom dominated phytoplankton at an oligotrophic level. High concentrations of iron in influent streams and redistribution followed by precipitation of iron during periods of partial turnover removed phosphorus from the water. High concentrations of manganese and sulfate did not have the anticipated fertilizing effect, and recovery of nutrients from the depth of the lake was negligible. Mass balance calculations indicate that liberation of phosphorus from the sediments in the trophogenic zone was most important for the maintenance of primary production. 75% of carbon, 80% of nitrogen and 25% of phosphorus assimilated by the phytoplankton was mineralized in the trophogenic zone. Silica was effectively regenerated from the littoral zone during the decline of diatom blooms. Nitrogen and silica retention was 45% of the external load compared to 66% for phosphorus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References Adams, M. S. & R. T. Prentki, 1982. Biology, metabolism and functions of littoral submersed weedbeds of Lake Wingra, Wisconsin, USA: A summary and review. Arch. Hydrobiol./Suppl. 62: 333–409.

  • Ahlgren, I., 1980. A dilution model applied to a system of shallow, eutrophic lakes after diversion of sewage effluents. Arch. Hydrobiol. 89: 17–32.

    Google Scholar 

  • Andersen, J. M., 1974. Nitrogen and phosphorus budgets and the role of sediments in six shallow Danish lakes. Arch. Hydrobiol. 74: 528–550.

    Google Scholar 

  • Andersen, J. M., 1975. Influence of pH on release of phosphorus from lake sediments. Arch. Hydrobiol. 76: 411–419.

    Google Scholar 

  • Behrendt, H., 1990. The chemical composition of phytoplankton and zooplankton in an eutrophic shallow lake. Arch. Hydrobiol. 118: 129–145.

    Google Scholar 

  • Benner, R., M. A. Moran & R. E. Hodson, 1986. Biogeochemical cycling of lignocellulosic carbon in marine and freshwater ecosystems: Relative contributions of procaryotes and eucaryotes. Limnol. Oceanogr. 31: 89–100.

    Google Scholar 

  • Bjerve, L. & O. Grøterud, 1980. Discharge measurements by a new-formed relative salt-dilution method in small turbulent streams. Nordic Hydrology 11: 121–132.

    Google Scholar 

  • Bloesch, J., 1974. Sedimentation und Phosphorhaushalt im Vierwaldstättersee (Horwer Bucht) und im Rotsee. Schweiz. Z. Hydrol. 36: 71–186.

    Google Scholar 

  • Bloesch, J., P. Stadelmann & H. Bührer, 1977. Primary production, mineralization, and sedimentation in the euphotic zone of two Swiss lakes. Limnol. Oceanogr. 22: 511–526.

    Google Scholar 

  • Blomqvist, S. & C. Kofoed, 1981. Sediment trapping — a subaquatic in situ experiment. Limnol. Oceanogr. 26: 585–590.

    Google Scholar 

  • Boström, B., M. Jansson & C. Forsberg, 1982. Phosphorus release from lake sediments. A literature review. Arch. Hydrobiol. Beih. 18: 5–59.

    Google Scholar 

  • Brabrand, Å., B. A. Faafeng & J. P. M. Nilssen, 1990. Phosphorus supply to phytoplankton production — relative importance of fish excretion versus external loading. Can. J. Fish. aquat. Sci. 47: 364–372.

    Google Scholar 

  • Cole, J. J., N. F. Caraco & G. E. Likens, 1990. Short-range atmospheric transport: A significant source of phosphorus to an oligotrophic lake. Limnol. Oceanogr. 35: 1230–1237.

    Google Scholar 

  • Conley, D. J., S. S. Kilham & E. Theriot, 1989. Differences in silica content between marine and freshwater diatoms. Limnol. Oceanogr. 34: 205–213.

    Google Scholar 

  • Conley, D. J. & C. L. Schelske, 1989. Processes controlling the benthic regeneration and sedimentary accumulation of biogenic silica in Lake Michigan. Arch. Hydrobiol. 116: 23–43.

    Google Scholar 

  • Culver, D. A., 1977. Biogenic meromixis and stability in a soft-water lake. Limnol. Oceanogr. 22: 667–686.

    Google Scholar 

  • Currie, D. J. & J. Kalff, 1984. The relative importance of bacterioplankton and phytoplankton in phosphorus uptake in freshwater. Limnol. Oceanogr. 29: 311–321.

    Google Scholar 

  • Dillon, P. J., R. D. Evans & L. A. Molot, 1990. Retention and resuspension of phosphorus, nitrogen, and iron in a central Ontario Lake. Can. J. Fish. aquat. Sci. 47: 1269–1274.

    Google Scholar 

  • Einsele, W., 1936. Über die Beziehungen des Eisenkreislaufs zum Phosphatkreislauf im eutrophen See. Arch. Hydrobiol. 29: 664–686. Esteves, F. de A., 1979. Die Bedeutung der aquatischen Makrophyten für den Stoffhaushalt des Schöhsees. II. Die organischen Hauptbestandteile und der Energiegehalt der aquatischen Makrophyten. Arch. Hydrobiol./Suppl. 57: 144–187.

    Google Scholar 

  • Fleischer, S., 1983. Microbial phosphorus release during enhanced glycolysis. Naturwissenschaften 70: 415.

    PubMed  Google Scholar 

  • Fry, B., 1986. Sources of carbon and sulfur nutrition for consumers in three meromictic lakes of New York State. Limnol. Oceanogr. 31: 79–88.

    PubMed  Google Scholar 

  • Gächter, R., 1972. Die Bestimmung der Tagesraten der planktischen Primärproduktion — Modelle und In-situ-Messungen. Schweiz. Z. Hydrol. 34: 211–244.

    Google Scholar 

  • Gächter, R. & A. Bloesch, 1985. Seasonal and vertical variation in the C:P ratio of suspended and settling seston of lakes. Hydrobiologia 128: 193–200.

    Article  Google Scholar 

  • Gächter, R. &. A. Mares, 1985. Does settling seston release soluble reactive phosphorus in the hypolimnion of lakes? Limnol. Oceanogr. 30: 364–371.

    Google Scholar 

  • Godshalk, G. L. & R. G. Wetzel, 1978. Decomposition of aquatic angiosperms. II. Particulate components. Aquatic Bot. 5: 301–327.

    Article  Google Scholar 

  • Golterman, H. L. & R. S. Clymo, 1969. Methods for chemical analysis of fresh waters. Blackwell, 166 pp.

  • Gommes. R. & H. Muntau, 1981. La composition chimique des limnophites du Lac Majeur. Mem. ist. ital. Idrobiol. 38: 237–307.

    Google Scholar 

  • Granéli, W., 1978. Sediment oxygen uptake in south Swedish lakes. Oikos 39: 7–16.

    Google Scholar 

  • Granéli, W., 1979. The influence of Chironomus plumosus larvae on the exchange of dissolved substances between sediment and water. Hydrobiologia 60: 149–159.

    Google Scholar 

  • Hasler, A. D. & W. G. Einsele, 1948. Fertilization for increasing productivity of natural inland waters. 13th N. Amer. Wild L. Conf. 527–554.

  • Healey, F. P. & L. L. Hendzel, 1979. Indicators of phosphorus and nitrogen deficiency in five algae in culture. J. Fish. Res. Bd Canada 36: 1364–1369.

    Google Scholar 

  • Healey, F. P. & L. L. Hendzel, 1980. Physiological indicators of nutrient deficiency in lake phytoplankton. Can. J. Fish. aquat. Sci. 37: 442–453.

    Google Scholar 

  • Hilton, J., J. P. Lishman & P. V. Allen, 1986. The dominant processes of sediment distribution and focusing in a small, eutrophic, monomictic lake. Limnol. Oceanogr. 31: 125–133.

    Google Scholar 

  • Hongve, D., 1972. Lake Nordbytjernet, a limnological study with emphasis on macrovegetation and the relationship between hydrography and primary production. Thesis (in Norwegian), University of Oslo, 250 pp.

  • Hongve, D., 1974. Hydrographical features of Nordbytjernet, a manganese-rich meromictic lake in SE Norway. Arch. Hydrobiol. 74: 227–246.

    Google Scholar 

  • Hongve, D., 1975. The littoral vegetation of Nordbytjernet, a small lake in south-east Norway. Norw. J. Bot. 22: 83–97.

    Google Scholar 

  • Hongve, D., 1980. Chemical stratification and stability of meromictic lakes in the Upper Romerike district. Schweiz. Z. Limnol. 42: 171–195.

    Google Scholar 

  • Hongve, D. & O. K. Skogheim, 1978. Potentiometric titration of sulfate in fresh water. Vatten 34: 183–186.

    Google Scholar 

  • Jordan, M. J., G. E. Likens & B. J. Peterson, 1985. Organic carbon budget. In Likens, G. E. (ed.). An ecosystem approach to aquatic ecology. Mirror Lake and its Environment. Springer-Verlag, New York: 292–310.

    Google Scholar 

  • Jørgensen, P. & S. R. Østmo, 1990. Hydrology in the Romerike area, southern Norway. Nor. geol. unders. Bull. 418: 19–26.

    Google Scholar 

  • Kamp-Nielsen, L., 1974. Mud-water exchange of phosphate and other ions in undisturbed sediment cores and factors affecting the exchange rates. Arch. Hydrobiol. 73: 218–237.

    Google Scholar 

  • Kamp-Nielsen, L., 1975. A kinetic approach to the aerobic sediment-water exchange of phosphorus in lake Esrom. Ecol. Modelling 1: 153–160. Kjensmo, J., 1967. The development and some main features of ‘iron-meromictic’ soft water lakes. Arch. Hydrobiol./Suppl. 32: 137–312.

    Article  Google Scholar 

  • Kjensmo, J., 1968. The primary production and its influence on the meromictic stability in Lake Svinsjøen. Schweiz. Z. Hydrol. 30: 297–317.

    Google Scholar 

  • Klaveness, D., 1977. Morphology, distribution and significance of the manganese-accumulating microorganism Metallogenium in lakes. Hydrobiologia 56: 25–33.

    Google Scholar 

  • Lee, G. F., W. C. Sonzogni & R. D. Spear, 1977. Significance of oxic vs anoxic conditions for Lake Mendota sediment phosphorus release. In H. L. Golterman (ed.), Interactions between sediments and freshwaters. Dr W. Junk Publishers, The Hague: 294–306.

    Google Scholar 

  • Lehmann, R., 1983. Untersuchungen zur Sedimentation in einem oligotrophen Alpensee (Königsee) wärend der sommerlichen Schichtung. Arch. Hydrobiol. 96: 486–495.

    Google Scholar 

  • Likens, G. E. & M. B. Davis, 1975. Post-glacial history of Mirror Lake and its watershed in New Hampshire, USA: an initial report. Verh. int. Ver. Limnol. 19: 982–993.

    Google Scholar 

  • Løvstad, Ø., 1977. The influence of limiting factors on some usual planktonic diatoms. Thesis (in Norwegian), University of Oslo.

  • Løvstad, Ø., 1986. Biotests with phytoplankton assemblages. Growth limitation along temporal and spatial gradients. Hydrobiologia 134: 141–149.

    Google Scholar 

  • Lund, J. W. G., 1950. Studies on Asterionella formosa Hass. II. Nutrient depletion and the spring maximum. J. Ecol. 38: 1–35.

    Google Scholar 

  • Mortimer, C. H., 1941–42. The exchange of dissolved substances between mud and water in lakes. J. Ecol. 29–30: 280–329, 147–201.

    Google Scholar 

  • Norwegian National Committee for the International Hydrological Decade, 1975. Hydrological data-Norden. Romerike Representative basin, Norway. Data volume 1972–74. Oslo, 50 pp.

  • Ohle, W., 1962. Die Stoffhaushalt der Seen als Grundlage einer allgemeinen Stoffwechseldynamik der Gewässer. Kieler Meeresforschungen 18: 107–120.

    Google Scholar 

  • Overmann, J. & M. M. Tilzer, 1989. Control of primary productivity and the significance of photosynthetic bacteria in a meromictic kettle lake. Mittlerer Buchensee, West-Germany. Aquatic Sci. 51: 261–278.

    Google Scholar 

  • Parkin, T. B. & T. D. Brock, 1981. Photosynthetic bacterial production and carbon mineralization in a meromictic lake. Arch. Hydrobiol. 91: 366–382.

    Google Scholar 

  • Rippey, B., 1983. A laboratory study of the silicon release process from a lake sediment (Lough Neagh, Northern Ireland). Arch. Hydrobiol. 96: 417–433.

    Google Scholar 

  • Rosa, F., 1985. Sedimentation and sediment resuspension in Lake Ontario. J. Great Lakes Res. 11: 13–25.

    Google Scholar 

  • Ryding, S.-O. & C. Forsberg, 1977. Sediments as a nutrient source in shallow, polluted lakes. In Golterman, H. L. (ed.) Interactions between sediments and freshwater. Dr W. Junk Publishers, The Hague: 227–234.

    Google Scholar 

  • Ryding, S.-O. & C. Forsberg, 1979. Shortterm load-response relationships in shallow, polluted lakes. In J. Barica & L. R. Mur (eds), Hypertrophic ecosystems. Developments in Hydrobiology 2. Dr W. Junk Publishers, The Hague: 96–103.

    Google Scholar 

  • Sicko-Goad, L., C. L. Schelske & E. F. Stoermer, 1984. Estimation of intracellular carbon and silica content of diatoms from natural assemblages using morphometric techniques. Limnol. Oceanogr. 29: 1170–1178.

    Google Scholar 

  • Sommer, U. & H.-H. Stabel, 1983. Silicon consumption and population density changes of dominant planktonic diatoms in Lake Constance. J. Ecol. 71: 119–130.

    Google Scholar 

  • Søndergaard, M., B. Riemann, L. M. Jensen, N. O. G. Jørgensen, P. K. Bjørnsen, M. Olesen, J. B. Larsen, O. Geertz-Hensen, J. Hansen, K. Christoffersen, A.-M. Jespersen, F. Andersen & S. Bosselmann, 1988. Pelagic food web processes in an oligotrophic lake. Hydrobiologia 164: 271–286. Tessenow, U., 1966. Untersuchungen über den Kieselsäurehaushalt der Binnengewässer. Arch. Hydrobiol./Suppl. 32: 1–136.

    Google Scholar 

  • Tessenow, U., 1972. Lösungs-, Diffusions- und Sorptionsprozesse in der Oberschicht von Seesedimenten. 1. Ein Langzeitexperiment unter aeroben und anaeroben Bedingungen in Fliessgleichgewicht. Arch. Hydrobiol. Suppl. 38: 353–398.

    Google Scholar 

  • Tessenow, U., 1975. Lösungs, Diffusions- und Sorptionsprozesse in der Oberschicht von Seesedimenten. V. Die Differenzierung der Profundalsedimente eines oligotrophen Bergsees (Feldsee, Hochschwarzwald) durch Sediment-WasserWechselwirkungen. Arch. Hydrobiol. Suppl. 47: 325–412.

    Google Scholar 

  • Tezuka, Y., 1989. The C:N:P ratio of phytoplankton determines the relative amounts of dissolved inorganic nitrogen and phosphorus released during aerobic decomposition. Hydrobiologia 173: 55–62.

    Google Scholar 

  • Twinch, A. J. & R. H. Peters, 1984. Phosphate exchange between littoral sediments and overlying water in an oligotrophic north-temperate lake. Can. J. Fish. aquat. Sci. 41: 1609–1617.

    Google Scholar 

  • Ulén, B., 1978. Seston and sediment in Lake Norrviken. III. Nutrient release from sediment. Schweiz. Z. Hydrol. 40: 287–305.

    Google Scholar 

  • Ulén, B., 1978a. Seston and sediment in Lake Norrviken. II. Aerobic decomposition of algae. Schweiz. Z. Hydrol. 40. 104–118.

    Google Scholar 

  • Viaroli. P. & I. Fumagalli, 1991. Regeneration of dissolved reactive silica during decomposition of recalcitrant plant tissues in temporary shallow-water environments. Verh. int. Ver. Limnol. 24: 2717–2721.

    Google Scholar 

  • Vollenweider, R. A., 1969. A manual on methods for measuring primary production in aquatic environments. Blackwell, 213 pp.

  • Wetzel, R. G., 1983. Limnology. Saunders College Publishing, 858 pp.

  • Wetzel, R. G., 1990. Edgardi Baldi Memorial Lecture. Land-Water interfaces: Metabolic and limnological regulators. Verh. int. Ver. Limnol. 24: 6–24.

    Google Scholar 

  • Wetzel, R. G., P. H. Rich, M. C. Miller & H. L. Allen, 1972. Metabolism of dissolved and particulate detrital carbon in a temperate hard-water lake. Mem. Ist. ital. Idrobiol. 29 Suppl.: 185–243.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dept. of Limnology University of Oslo

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hongve, D. Nutrient metabolism (C, N, P, and Si) in the trophogenic zone of a meromictic lake. Hydrobiologia 277, 17–39 (1994). https://doi.org/10.1007/BF00023983

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00023983

Key words

Navigation