Skip to main content
Log in

Concentration of nutrients in selected lakes in the High Tatra Mountains, Slovakia: effect of season and watershed

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Concentrations of total phosphorus (TP), inorganic and organic nitrogen, organic matter, and chlorophyll-a were studied in ten mountain lakes at various stages of acidification, trophy, and type of watershed during each July and October from 1987 to 1990. Concentrations of TP and total organic matter were higher in July than in October. Concentrations of NH44 +-N decreased and NO3 -N increased from July to October. The relative composition of total nitrogen (TN) and its concentration were strongly dependent on the type of watershed: the lowest TN concentrations were observed in lakes with forested watersheds, increasing above the timberline and reaching maximum values in acidified lakes with rocky watersheds. In the pool of TN, nitrate was most important in lakes above the timberline (70–86% of TN), and organic nitrogen in forest lakes (> 90% of TN). Lakes with rocky watersheds were characterized by high ratios of TN:TP (> 250 by mass). The concentration of chlorophyll-a varied widely, from 0.01 to 22.6 µg l−1, without any consistent change between July and October, and were P limited.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Almer, B., W. Dickson, C. Ekström & E. Hörnström, 1978. Sulfur pollution and the aquatic ecosystem. In J.O. Nriago (ed.), Sulfur in the environment, Part 2. Wiley, New York: 271–311.

    Google Scholar 

  • Bowman, W. D., 1992. Inputs and storage of nitrogen in winter snowpack in an alpine ecosystem. Arctic and Alpine Research 24: 211–215.

    Google Scholar 

  • Brezonik, P L., J. G. Eaton, T. M. Frost, P. J. Garrison, T. K. Kratz, C. E. Mach, J. H. McCormick, J. A. Perry, W. A. Rose, C. J. Sampson, B. C. L. Shelley, W. A. Swenson & K. E. Webster, 1993. Experimental acidification of Little Rock Lake, Wisconsin: Chemical and biological changes over the pH range 6.1 to 4.7. Can. J. Fish. aquat. Sci. 50: 1101–1121.

    Google Scholar 

  • Catalan, J., 1992. Evolution of dissolved and particulate matter during the ice-covered period in a deep, high-mountain lake. Can. J. Fish. aquat. Sci. 49: 945–955.

    Google Scholar 

  • Denning, A. S., J. Baron, M. A. Mast & M. Arthur, 1991. Hydrologic pathways and chemical composition of runoff during snowmelt in loch Vale watershed, Rocky Mountain National Park, Colorado, USA. Wat. Air Soil Pollut. 59: 107–123.

    Google Scholar 

  • Dillon, P. J. & L. A. Molot, 1990. The role of ammonium and nitrate retention in the acidification of lakes and forested catchments. Biogeochemistry 11: 23–43.

    Article  Google Scholar 

  • Downing, J. A. & E. McCauley, 1992. The nitrogen:phosphorus relationship in lakes. Limnol. Oceanogr. 37: 936–945.

    Google Scholar 

  • Edwards, A. C., J. Creasey & M. S. Cresser, 1986. Soil freezing effects on upland stream solute chemistry. War. Res. 20: 831–834.

    Google Scholar 

  • Fott, J., M. Prażaková E. Stuchlik & Z. Stuchlíková, 1994. Acidification of lakes in Šumava (Bohemia) and in the High Tatra Mountains (Slovakia). Hydrobiologia 274 (Dev. Hydrobiol. 93): 37–47.

    Google Scholar 

  • Galloway, J. N., G. R. Hendrey, C. L. Schofield, N. E. Peters & A. H. Johannes, 1987. Processes and causes of lake acidification during spring snowmelt in the West-Central Adirondack Mountains, New York. Can. J. Fish. aquat. Sci. 44: 1595–1602. precipitation in Slovakia. (In Slovak). Hydrochemical problems of water pollution, Geological Survey, Bratislava: 63–71.

    Google Scholar 

  • Gomolka, R. E., 1975. An investigation of atmospheric phosphorus as a source of lake nutrient. M.Sc. Thesis, Univ. of Toronto, 167 pp.

  • Haselwandter, K., A. Hofmann, H. Holzmann & D. J. Read, 1983. Availability of nitrogen and phosphorus in the nival zone of the Alps. Oecologia 57: 266–269.

    Google Scholar 

  • Hejzlar, J. & J. Kopáček, 1990. Determination of low chemical oxygen demand values in water by the dichromate semi-micro method. Analyst 115: 1463–1467.

    Article  Google Scholar 

  • Henriksen, A. & D. F. Brakke, 1988. Increasing contributions of nitrogen to the acidity of surface waters in Norway. Wat. Air Soil Pollut. 42: 183–201.

    Google Scholar 

  • Iljin, N. P. & D. S. Orlov, 1973. Photochemical destruction of humic acids. Soviet Soil Sci. 13: 75–83.

    Google Scholar 

  • Jansson, M., G. Persson & O. Broberg, 1986. Phosphorus in acidified lakes: The example of lake Gårds\j:on, Sweden. Hydrobiologia 139: 81–96.

    Google Scholar 

  • Johannessen, M. & A. Henriksen, 1978. Chemistry of snow meltwater: Changes in concentration during melting. War. Resour. Res. 14: 615–619.

    Google Scholar 

  • Johannessen, M., A. Skartveit & R. F. Wright, 1980. Streamwater chemistry before, during and after snowmelt. Proc. Int. conf. ecol. impact acid precip., Norway, SNSF project: 224–225.

    Google Scholar 

  • Kerekes, J., S. Beauchamp, R. Tordon & C. Tremblay, 1986. Organic versus anthropogenic acidity in tributaries of the Kejimkujik watersheds in western Nova Scotia. Wat. Air Soil Pollut. 31: 165–173.

    Google Scholar 

  • Kopácěk, J. & P. Blażka, 1994. Ammonium uptake in alpine streams in the High Tatra Mountains (Slovakia). Hydrobiologia 294: 157–165.

    Article  Google Scholar 

  • Kopáček, J. & E. Stuchhlík, 1994. Chemical characteristics of lakes in the High Tatra Mountains, Czechoslovakia. Hydrobiologia 274 (Dev. Hydrobiol. 93): 49–56.

    Google Scholar 

  • Kopáček, J., L. Procházková, E. Stuchlík & P. Blażka, 1995. The nitrogen-phosphorus relationship in mountain lakes. Influence of atmospheric input, watershed, and pH. Limnol. Oceanogr. 40: 930–937.

    Google Scholar 

  • Lukavský, J., 1994. Algal flora of lakes in the High Tatra Mountains (Slovakia). Hydrobiologia 274 (Dev. Hydrobiol. 93): 65–74.

    Google Scholar 

  • Melack, J. M., J. L. Stoddard & C. A. Ochs, 1985. Major ion chemistry and sensitivity to acid precipitation of Sierra Nevada lakes. Wat. Resour. Res. 21: 27–32.

    Google Scholar 

  • Moldan, B., M. Veselý & A. Bartoňová, 1987. Chemical composition of atmospheric precipitation in Czechoslovakia, 1976–1984 — I. Monthly samples. Atmos. Envir. 21: 2383–2395.

    Google Scholar 

  • Murdoch, P. S. & J. L. Stoddard, 1992. The role of nitrate in the acidification of streams in the Catskill Mountains of New York. Wat. Resour. Res. 28: 2707–2720.

    Article  Google Scholar 

  • Popovský, J., 1970. Determination of total phosphorus in fresh waters. Int. Revue ges. Hydrobiol. 55: 435–443.

    Google Scholar 

  • Procházková, L., 1959. Bestimmung der Nitrate im Wasser. Z. analyt. Chem. 167: 254–260.

    Google Scholar 

  • Procházková, L., 1960. Einfluss der Nitrate and Nitrite auf die Bestimmung des organischen Stickstoffs and Ammonimus im Wasser. Arch. Hydrobiol. 56: 179–185.

    Google Scholar 

  • Procházková, L., 1964. Spectrophotometric determination of ammonia as rubazoic acid with bispyrazolone reagent. Analyt. Chem. 36: 865–

    Google Scholar 

  • Schindler, D. W., 1988. Effects of acid rain on freshwater ecosystems. Science 239: 149–157.

    Google Scholar 

  • Schindler, D. W., 1994. Changes caused by acidification to the biodiversity: Productivity and biogeochemical cycles of lakes. In C. E. W. Steinberg & R. F. Wright (eds), Acidification of freshwater ecosystems: Implications for the future. J. Wiley & Sons, Chichester, N.Y., etc.: 153–164.

    Google Scholar 

  • Schindler, D. W., K. H. Mills, D. F. Malley, D. L. Findlay, J. A. Shearer, I. J. Davies, M. A. Turner, G. A. Linsey & D. R. Cruikshank, 1985. Long-term ecosystem stress: The effects of years of experimental acidification on a small lake. Science 228: 1395–1401.

    Google Scholar 

  • Schuurkes, J. A. A. R. & R. Mosello, 1988. The role of external ammonium inputs in freshwater acidification. Schweiz. Z. Hydrol. 50/1: 71–86.

    Google Scholar 

  • Shaw, R. D., A. M. Trimbee, A. Minty, H. Fricker & E. E. Prepas, 1989. Atmospheric deposition of phosphorus and nitrogen in central Alberta with emphasis on Narrow lake. Wat. Air Soil Pollut. 43: 119–134.

    Article  Google Scholar 

  • Stangenberg, M., 1938. Zur Hydrochemie der Tatraseen. Verh. int. Ver. Limnol. 8: 211–220.

    Google Scholar 

  • Stephens, K., 1963. Determination of low phosphate concentrations in lake and marine waters. Limnol. Oceanogr. 8: 361–362.

    Google Scholar 

  • Stoddard, J. L., 1994. Long-term changes in watershed retention of nitrogen. In A. Baker (ed), Environmental Chemistry of lakes and reservoirs. American Chemical Society, Advances in Chemistry No 237: 223–284.

  • Stottlemyer, R., 1992. Nitrogen mineralization and stream water chemistry, Rock Creek watershed, Denali National Park, Alaska, U.S.A. Arctic and Alpine Research 24: 291–303.

    Google Scholar 

  • Stottlemyer, R. & D. Toczydlowski, 1990. Pattern of solute movement from snow into an upper Michigan stream. Can. J. Fish. aquat. Sci. 47: 290–300.

    Google Scholar 

  • Sottlemyer, R. & D. Toczydlowski, 1991. Stream chemistry and hydrologic pathways during snowmelt in a small watershed adjacent Lake Superior. Biogeochemistry 13: 177–197.

    Google Scholar 

  • Stottlemyer, R. & C. A. Troendle, 1992. Nutrient concentration patterns in streams draining alpine and subalpine catchments, Fraser Experimental Forest, Colorado. J. Hydrol. 140: 179–208.

    Article  Google Scholar 

  • Strickland, J. D. H. & T. R. Parsons, 1968. A practical handbook of seawater analysis. Bull. Fish. Res. Bd Can. 167, 311 pp.

  • Sruchlík, E., Z. Stuchlícová, J. Fott, L. Rużička & J. Vrba, 1985. Effect of acid precipitation on waters of the TANAP territory. (In Czech, with English summary). Treatises concerning the Tatra National Park 26: 173–211.

    Google Scholar 

  • Vitousek, P. M. & W. A. Reiners, 1975. Ecosystem succession and nutrient retention: A hypothesis. BioScience 25: 376–381.

    Google Scholar 

  • Vyhnálek, V., J. Fort & J. Kopácěk, 1994. Chlorophyll — phosphorus relationship in acidified lakes of the High Tatra Mountains (Slovakia). Hydrobiologia 274 (Dev. Hydrobiol. 93): 49–56.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kopáček, J., Stuchĺik, E., Vyhnálekl, V. et al. Concentration of nutrients in selected lakes in the High Tatra Mountains, Slovakia: effect of season and watershed. Hydrobiologia 319, 47–55 (1996). https://doi.org/10.1007/BF00020970

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00020970

Key words

Navigation