Skip to main content
Log in

An endochitinase gene expressed at high levels in the stylar transmitting tissue of tomatoes

  • Research Article
  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

A gene (pMON9617; Chi2;1) identified by screening a tomato pistil cDNA library has been found to encode a protein similar in sequence to class II chitinases. Using a baculovirus expression system we show that the Chi2;1 protein is an active endochitinase. The Chi2;1 protein is most similar in sequence to a previously described stylar chitinase (SK2) isolated from potato. Both proteins lack the diagnostic N-terminal cysteine-rich regions and the C-terminal vacuolar targeting signals of class I chitinases and appear to define a novel type of class II endochitinases associated with flowers. Chi2;1 is expressed predominantly in floral organs and its expression within these organs is temporally regulated. The highest level of expression is found in the transmitting tissue of the style where Chi2;1 mRNA begins to accumulate just prior to anthesis. In vegetative tissue, low levels of Chi2;1 mRNA were detected, and these levels did not increase in response to wounding or treatment with ethephon. mRNA from Chi2;1 orthologs was not detected in most other angiosperms tested, even including some members of the Solanaceae, and it is therefore unlikely that Chi2;1 is essential for stylar function. A fragment containing 1.4 kilobase pairs of 5′-flanking DNA from the Chi2;1 gene was shown to drive high-level expression of an attached reporter gene in the styles of transgenic tomatoes. This fragment has utility for engineering expression of other coding regions in styles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Atkinson AH, Heath RL, Simpson RJ, Clarke AE, Anderson MA: Proteinase inhibitors in Nicotiana alata are derived from a precursor protein which is processed into five homologous inhibitors. Plant Cell 5: 203–213 (1993).

    Article  PubMed  Google Scholar 

  2. Bause E: Structural requirements of N-glycosylation of proteins: Studies with proline peptides as conformational probes. Biochem J 209: 331–336 (1983).

    PubMed  Google Scholar 

  3. Beerhues L, Kombrink E: Primary structure and expression of mRNAs encoding basic chitinase and 1,3-β-glucanase in potato. Plant Mol. Biol. 24: 353–367 (1994).

    PubMed  Google Scholar 

  4. Boller T: Ethylene and the regulation of antifungal hydrolases in plants. Oxford Surv Plant Mol Biol 5: 145–174 (1988).

    Google Scholar 

  5. Boller T, Gehri A, Mauch F, Vögeli U: Chitinase in bean leaves: induction by ethylene, purification, properties, and possible function. Planta 157: 22–31 (1983).

    Google Scholar 

  6. Broglie K, Chet I, Holliday M, Cressman R, Biddle P, Knowlton S, Mauvais CJ, Broglie R: Transgenic plants with enhanced resistance to the fungal pathogen Rhisoctonia solani. Science 254: 1194–1197 (1991).

    Google Scholar 

  7. Broglie KE, Gaynor JJ, Broglie RM: Ethylene-regulated gene expression L Molecular cloning of genes encoding an endochitinase from Phaseolus vulgaris. Proc Natl Acad Sci USA 83: 6820–6824 (1986).

    PubMed  Google Scholar 

  8. Budelier KA, Smith AG, Gasser CS: Regulation of a stylar transmitting tissue-specific gene in wild-type and transgenic tomato and tobacco. Mol Gen Genet 224: 183–192 (1990).

    Article  PubMed  Google Scholar 

  9. Chen CG, Cornish EC, Clarke AE: Specific expression of an extensin-like gene in the style of Nicotiana alata. Plant Cell 4: 1053–1062 (1992).

    Article  PubMed  Google Scholar 

  10. Clarke AE, Anderson MA, Atkinson A, Bacic A, Ebert PR, Jahnen W, Lush WM, Mau SL, Woodward JR: Recent developments in the molecular genetics and biology of self-incompatibility. Plant Mol Biol 13: 267–271 (1989).

    Article  PubMed  Google Scholar 

  11. Crouse GF, Frischauf A, Lehrach H: An integrated and simplified approach to cloning into plasmids and single-stranded phage. Meth Enzymol. 101: 78–89 (1983).

    PubMed  Google Scholar 

  12. Danhash N, Wagemakers CAM, van Kan JAL, de Wit PJGM: Molecular characterization of four chitinase cDNAs obtained from Cladosporium fulvum-infected tomato. Plant Mol Biol 22: 1017–1029 (1993).

    PubMed  Google Scholar 

  13. de Jong AJ, Cordewener J, Loschiavo F, Terzi M, Vandekerckhove J, van Kammen A, de Vries SC: A carrot somatic embryo mutant is rescued by chitinase. Plant Cell 4: 425–433. (1992).

    Article  PubMed  Google Scholar 

  14. de Jong AJ, Heidstra R, Spaink HP, Hartog MV, Meijer EA, Hendriks T, Loschiavo F, Terzi M, Bisseling T, van Kammen A, de Vries SC: Rhizobium lipooligosaccharides rescue a carrot somatic embryo mutant. Plant Cell 5: 615–620 (1993).

    Article  PubMed  Google Scholar 

  15. Devereux J, Haeberli P, Smithies O: A comprehensive set of sequence analysis programs for the VAX. Nucl Acids Res. 12: 387–395 (1984).

    PubMed  Google Scholar 

  16. Dickinson H: Self-pollination: simply a social disease. Nature 367: 517–518 (1994).

    Article  PubMed  Google Scholar 

  17. Feinberg AP, Vogelstein B: A technique for radiolabelling DNA restriction endonuclease fragments to high specific activity. Anal Biochem 132: 6–13 (1983).

    PubMed  Google Scholar 

  18. Gasser CS: Molecular studies on the differentiation of floral organs. Ann Rev Plant Physiol 42: 621–649 (1991).

    Article  Google Scholar 

  19. Gasser CS, Budelier KA, Smith AG, Shah DM, Fraley RT: Isolation of tissue-specific cDNAs from tomato pistils. Plant Cell 1: 15–24 (1989).

    Article  PubMed  Google Scholar 

  20. Gasser CS, Gunning DA, Budelier KA, Brown SM: Structure and expression of cystosolic cyclophilin/peptidyl-prolyl cis-trans isomerase of higher plants and production of active tomato cyclophilin in Escherichia coli. Proc Natl Acad Sci USA 87: 9519–9523 (1990).

    PubMed  Google Scholar 

  21. Gasser CS, Winter JA, Hironaka CM, Shah DM: Structure, expression, and evolution of the 5-enolpyruvylshikimate-3-phosphate synthase genes of petunia and tomato. J Biol Chem 263: 4280–4289 (1988).

    Google Scholar 

  22. Goldman MHD, Pezzotti M, Seurinck J, Mariani C: Developmental expression of tobacco pistil-specific genes encoding novel extensin-like proteins. Plant Cell 4: 1041–1051 (1992).

    Article  PubMed  Google Scholar 

  23. Hendrick SA, Bell JN, Boller T, Lamb CJ: Chitinase cDNA cloning and mRNA induction by fungal elicitor, wounding and infection. Plant Physiol 86: 182–186 (1988).

    Google Scholar 

  24. Hinchee MAW, Conner-Ward DV, Newell CA, McDonnell RE, Sato SJ, Gasser CS, Fischhoff DA, Re DB, Fraley RT, Horsch RB: Production of transgenic soybean plants using Agrobacterium-mediated DNA transfer. Bio/technology 6: 915–922 (1988).

    Article  Google Scholar 

  25. Jefferson RA: Assaying chimeric genes in plants: the GUS gene fusion system. Plant Mol Biol Rep 5: 387–405 (1987).

    Google Scholar 

  26. Jefferson RA, Kavanagh TA, Bevan MW: GUS fusions: β-glucuronidase as a sensitive and versitile gene fusion marker in higher plants. EMBO J 6: 3901–3907: (1987).

    PubMed  Google Scholar 

  27. Kombrink E, Schroder M, Hahlbrock K: Several ‘pathogenesis-related’ proteins in potato are 1,3-β-glucanases and chitinases. Proc Natl Acad Sci USA 85: 782–786 (1988).

    Google Scholar 

  28. Legrand M, Kauffmann S, Geoffroy P, Fritig B: Biological function of pathogenesis-related proteins: four tobacco pathogenesis-related proteins are chitinases. Proc Natl Acad Sci USA 84: 6750–6754 (1987).

    Google Scholar 

  29. Lotan T, Ori N, Fluhr R: Pathogenesis-related proteins are developmentally regulated in tomato flowers. Plant Cell 1: 881–887 (1989).

    Article  PubMed  Google Scholar 

  30. Lowry OH, Roseborough HJ, Farr AL, Randall RJ: Protein measurement with the Folin phenol reagent. J Biol Chem 193: 265–275 (1951).

    PubMed  Google Scholar 

  31. Maeda S: Expression of foreign genes in insects using baculovivus vectors. Ann Rev Entomol 34: 351–372 (1989).

    Article  Google Scholar 

  32. Maeda S: Gene transfer vectors of a baculovirus, Bombyx mori nuclear polyhedrosis virus, and their use for expression of foreign genes in insect cells. In: Mitsuhashi J (ed) Invertebrate Cell System Applications, pp. 167–181. CRC Press, Boca Raton, FL (1989).

    Google Scholar 

  33. Martineau B, McBride KE, Houck CM: Regulation of metallocarboxypeptidase inhibitor gene expression in tomato. Mol Gen Genet 228: 281–286 (1991).

    Article  PubMed  Google Scholar 

  34. Mauch F, Hadwiger LA, Boller T: Antifungal hydrolases in pea tissue, I. Purification and characterization of two chitinases and two β-1,3-glucanases differentially regulated during development and in response to fungal infection. Plant Physiol 87: 325–333 (1988).

    Google Scholar 

  35. McCormick S, Niedermeyer J, Fry J, Barnason A, Horsch R, Fraley R: Leaf disc transformation of cultivated tomato (L. esculentum) using Agrobacterium tumefaciens. Plant Cell Rep 5: 81–84 (1986).

    Article  Google Scholar 

  36. Meins F, Fritig B, Linthorst JHM, Mikkelsen JD, Neuhaus J-M, Ryals J: Plant chitinase genes. Plant Mol Biol Rep 12: S22-S28 (1994).

    Google Scholar 

  37. Memelink J, Linthorst JMH, Schilperoort RA, Hoge JHC: Tobacco genes encoding acidic and basic isoforms of pathogenesis-related proteins display different expression patterns. Plant Mol Biol 14: 119–126 (1990).

    PubMed  Google Scholar 

  38. Mills DR, Kramer FR: Structure-independent nucleotide sequence analysis. Proc Natl Acad Sci USA 76: 2232–2235 (1979).

    PubMed  Google Scholar 

  39. Molano J, Duran A, Cabib E: A rapid and sensitive assay for chitinase using tritiated chitin. Anal Biochem 83: 648–656 (1977).

    PubMed  Google Scholar 

  40. Murfett J, Atherton TL, Mou B, Gasser CS, McClure BA: S-RNase expressed in transgenic Nicotiana causes S-allele-specific pollen rejection. Nature 367: 563–566 (1994).

    Article  PubMed  Google Scholar 

  41. Neale AD, Wahleithner JA, Lund M, Bonnett HT, Kelly A, Meeks-Wagner DR, Peacock WJ, Dennis ES: Chitinase, β-1,3-glucanase, osmotin and extensin are expressed in tobacco explants during flower formation. Plant Cell 2: 673–684 (1990).

    Article  PubMed  Google Scholar 

  42. Neuhaus JM, Stioher L, Meins F, Boller T: A short C-terminal sequence is necessary and sufficient for the targeting of chitinases to the plant vacuole. Proc Natl Acad Sci USA 88: 10362–10366 (1991).

    PubMed  Google Scholar 

  43. Ori N, Sessa G, Lotan T, Himmelhoch S, Fluhr R: A major stylar matrix polypeptide (sp41) is a member of the pathogenesis-related proteins superclass. EMBO J 9: 3429–3436 (1990).

    PubMed  Google Scholar 

  44. Raikhel NV, Lee HI, Broekaert WF: Structure and function of chitin-binding proteins. Ann Rev Plant Physiol Plant Mol Biol 44: 591–615 (1993).

    Article  Google Scholar 

  45. Rochester DE, Winer JA, Shah DM: The structure and expression of maize genes encoding the major heat shock protein, hsp70. EMBO J 5: 451–458 (1986).

    Google Scholar 

  46. Rogers SG, Klee HJ, Horsch RB, Fraley RT: Improved vectors for plant transformation: Expression cassette vectors and new selectable markers. Meth Enzymol. 153: 253–277 (1987).

    Google Scholar 

  47. Samac DA, Hironaka CM, Yallaly PE, Shah DM: Isolation and characterization of the genes encoding basic and acidic chitinase in Arabidopsis thaliana. Plant Physiol 93: 907–914 (1990).

    Google Scholar 

  48. Samac DA, Shah DM: Developmental and pathogen-induced activation of the Arabidopsis acidic chitinase promoter. Plant Cell 3: 1063–1072 (1991).

    Article  PubMed  Google Scholar 

  49. Shinshi H, Neuhaus J-M, Ryals J, Meins F: Structure of a tobacco endochitinase gene: evidence that different chitinase genes can arise by transposition of sequences encoding a cysteine-rich domain. Plant Mol Biol 14: 357–368 (1990).

    PubMed  Google Scholar 

  50. Vieira J, Messing J: Production of single stranded plasmid DNA. Meth Enzymol. 153: 3–11 (1987).

    PubMed  Google Scholar 

  51. von Heijne G: A new method for predicting signal sequence cleavage sites. Nucl Acids Res 14: 4683–4690 (1986).

    PubMed  Google Scholar 

  52. Wemmer T, Kaufmann H, Kirch HH, Schneider K, Lottspeich F, Thompson RD: The most abundant soluble basic protein of the stylar transmitting tract in potato (Solanum tuberosum L.) is an endochitinase. Planta 194: 264–273 (1994).

    Article  PubMed  Google Scholar 

  53. Wu HM, Zou JT, May B, Gu Q, Cheung AY: A tobacco gene family for flower cell wall proteins with a proline-rich domain and a cysteine-rich domain. Proc Natl Acad Sci USA 90: 6829–6833 (1993).

    PubMed  Google Scholar 

  54. Yang Y, Hamaguchi K: Hydrolysis of 4-methylumbelliferyl N-acetyl-chitotrioside catalyzed by hen and turkey lysozymes. pH dependence of the kinetics constants. J. Biochem. 87: 1003–1014 (1980).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harikrishna, K., Jampates-Beale, R., Milligan, S.B. et al. An endochitinase gene expressed at high levels in the stylar transmitting tissue of tomatoes. Plant Mol Biol 30, 899–911 (1996). https://doi.org/10.1007/BF00020802

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00020802

Key words

Navigation