Skip to main content
Log in

Identification of the Agrobacterium tumefaciens C58 T-DNA genes e and f and their impact on crown gall tumour formation

  • Research Article
  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

DNA sequence analysis of the 4.4 kilobases (kb) Eco RI fragment 14 from T-DNA of Agrobacterium tumefaciens C58 revealed three open reading frames. One of them (945 bp) was supposed to encode the transcript e, the function of which has not been identified to date. Furthermore, a so far undescribed open reading frame (1035 bp) was identified, located in the centre of the Eco RI fragment 14 and termed gene f. The third open reading frame encoded the carboxy-terminal part of the agrocinopine synthase (Acs). The gene e-encoded protein showed significant homologies to the gene products of the Agrobacterium rhizogenes rolB gene and the Agrobacterium tumefaciens gene 5. Both gene products are supposed to regulate the plant's reaction on auxin. Depending on the plant species tested, Agrobacterium strains carrying mutations in gene e induced only small or almost no detectable crown gall tumours. According to these mutational studies and the protein homologies observed, the gene e product is suggested to be involved in tumour formation. Infection of several plant species with Agrobacterium carrying a mutated gene f, as well as expression of the gene f in transgenic tobacco plants did not lead to visible morphological changes. Therefore, in contrast to gene e, the gene f seems not to be essential for tumour formation. In order to study whether gene f is an active gene, its expression in agrobacteria and plants was monitored by translational lacZ fusion. In planta, the putative gene f-promoter mediates a tissue-specific expression pattern. Although gene f was expressed in free-living agrobacteria as well as in transgenic plants, the function of the f locus remained unclear. DNA homology studies with the f gene region revealed a mosaic-like DNA structure, indicating that this locus might be the result of genetic exchanges between different Agrobacterium strains during evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ainley WM, Walker JC, Nagao RT, Key JL: Sequence and characterization of two auxin-regulated genes from soybean. J Biol Chem 263: 10658–10666 (1988).

    Google Scholar 

  2. Akiyoshi DE, Regier DA, Jem G, Gordon MP: Cloning and nucleotide sequence of the tzs gene from Agrobacterium tumefaciens T37. Nucl Acids Res 13: 2773–2788 (1985).

    Google Scholar 

  3. An G, Ebert PR, Yi B-Y, Choi C-H: Both TATA box and upstream regions are required for the nopaline synthase promoter activity in transformed tobacco cells. Mol Gen Genet 203: 245–250 (1986).

    Google Scholar 

  4. Arnold W, Pühler A: A family of high-copy-number plasmid vectors with single end-label sites for rapid nucleotide sequencing. Gene 70: 172–178 (1988).

    Google Scholar 

  5. Barker RF, Idler KB, Thompson DV, Kemp JD: Nucleotide sequence of the T-DNA region from Agrobacterium tumefaciens octopine Ti plasmid pTi5955. Plant Mol Biol 2: 235–250 (1983).

    Google Scholar 

  6. Baulcombe DC, Saunders GR, Beven MV, Mayo AM, Harrison BD: Expression of biologically active viral satellite RNA from the nuclear genome of transformed plants. Nature 321: 446–449 (1986).

    Google Scholar 

  7. Bevan M: Binary Agrobaceterium vectors for plant transformation. Nucl Acids Res 22: 8711–8721 (1984).

    Google Scholar 

  8. Bouchez D, Toureur J: Organization of the agropine synthesis region of the T-DNA of the Ri plasmid from Agrobacterium rhizogenes. Plasmid 25: 27–39 (1991).

    Google Scholar 

  9. Chang ACY, Cohen SN: Construction and characterization of amplifiable multicopy DNA cloning vehicles derived from P15A cryptic miniplasmid. J Bact 134: 1141–1156 (1978).

    Google Scholar 

  10. Corner TW, Goekjian VH, LaFayette PR, Key JL: Structure and expression of two auxin-inducible genes from Arabidopsis. Plant Mol Biol 15: 623–632 (1990).

    Google Scholar 

  11. Dröge W, Broer I, Pühler A: Transgenic plants containing the phosphinothricin-N-acetyltransferase gene metabolize the herbicide L-phosphinothricin (glufosinate) differently from untransformed plants. Planta 187: 142–151 (1992).

    Google Scholar 

  12. Eckhard T: A rapid method for the identification of plasmid desoxyribonuclic acid in bacteria. Plasmid 181: 36–43 (1981).

    Google Scholar 

  13. Ellis JG, Ryder MH, Tate ME: Agrobacterium tumefaciens TR-DNA encodes a pathway for agropine biosynthesis. Mol Gen Genet 195: 466–473 (1984).

    Google Scholar 

  14. Engler G, Depicker A, Maenhaut R, Vilarroel-Mandiola R, Van Montagu M, Shell J: Physical mapping of DNA base sequence homologies between an octopine and an nopaline Ti plasmid of Agrobacterium tumefaciens. J Mol Biol 152: 183–208 (1981).

    Google Scholar 

  15. Estruch JJ, Shell J, Spena A: The protein encoded by the rolB plant oncogene hydrolyses indole glucosides. EMBO J 10: 3125–3128 (1991).

    Google Scholar 

  16. Garfinkel DJ, Simpson RB, Ream LW, White FF, Gordon MP, Nester EW: Genetic analysis of crown gall, a fine structure map of the T-DNA by site directed mutagenesis. Cell 27: 143–153 (1981).

    Google Scholar 

  17. Gelvin SB, Karcher SJ, Goldsbrough PB: Use of a TR T-DNA promoter to express genes in plants and bacteria. Mol Gen Genet 199: 240–248 (1985).

    Google Scholar 

  18. Gielen J, De Beukeleer M, Seurinck J, Deboeck F, De Greve H, Lemmers M, Van Montagu M, Schell J: The complete nucleotide sequence of the TL-DNA of Agrobacterium tumefaciens plasmids pTiAch5. EMBO J 3: 835–846 (1984).

    Google Scholar 

  19. Goldberg SB, Flick JS, Rogers SG: Nucleotide sequence of the tmr locus of Agrobacterium tumefaciens pTi T37 T-DNA. Nucl Acids Res 12: 4665–4678 (1984).

    Google Scholar 

  20. Hallam SE, Malpartida F, Hopwood DA: Nucleotide sequence, transcription and deduced function of a gene involved in polyketide antibiotic synthesis in Streptomyces coelicolor. Gene 74: 305–320 (1988).

    Google Scholar 

  21. Hansen G, Larribe M, Vaubert D, Tempe J, Biermann B, Montoya AL, Chilton M-D, Brevet J: Agrobacterium rhizogenes pRI8196 T-DNA: Mapping and DNA sequence of functions involved in manopine synthesis and hairy root differentiation. Proc Natl Acad Sci USA 88: 7763–7767 (1991).

    Google Scholar 

  22. Herman G, O'Brian WE, Beaudet AL: An E. coli cassette suitable for study of eukaryotic expression. Nucl Acids Res 14: 7130 (1986).

    Google Scholar 

  23. Holema A, Hirsch PR, Hooykaas PJJ, Schilperoort RA: A binary plant vector strategy based on separation of vir and T-region of the Agrobacterium tumefaciens Ti-plasmid. Nature 303: 179–180 (1983).

    Google Scholar 

  24. Hooykaas PJJ, Schilperoort RA: Agrobacterium and plant genetic engineering. Plant Mol Biol 19: 15–38 (1992).

    Google Scholar 

  25. Horsch RB, Fry JE, Hoffmann NL, Eichenholtz D, Rogers SG, Fraley RT: A simple and general method for transforming genes into plants. Science 227: 1229–1231 (1985).

    Google Scholar 

  26. Janssens A, Engler G, Zambryski P, Van Montagu M: The nopaline C58 T-DNA region is transcribed in Agrobacterium tumefaciens. Mol Gen Genet 195: 341–349 (1984).

    Google Scholar 

  27. Joos H, Inze D, Caplan A, Sormann M, Van Montagu M, Schell J: Genetic analysis of T-DNA transcripts in nopaline crown galls. Cell 32: 1057–1067 (1983).

    Google Scholar 

  28. Körber H, Strizhov N, Staiger D, Feldwish J, Olson O, Sandberg G, Palme K, Schell J, Koncz C: T-DNA gene 5 of Agrobacterium tumefaciens modulates auxin response by autoregulated synthesis of a growth hormone in plants. EMBO J 10: 3983–3991 (1991).

    Google Scholar 

  29. Komro CT, DiRita VJ, Gelvin SB, Kemp JD: Site-specific mutagenesis in the TR-DNA region of octopine-type Ti plasmids. Plant Mol Biol 4: 253–263 (1985).

    Google Scholar 

  30. Lemmers M, De Beukeleer M, Holsters M, Zambryski P, Depicker A, Hernalsteens JP, Van Montagu M, Schell J: Internal organization, boundaries and integration of Ti-plasmid DNA in nopaline crown gall tumors. J Mol Biol 144: 353–376 (1980).

    Google Scholar 

  31. Levesque H, Delepelaire P, Rouzé, Slightom J, Tepfer D: Common evolutionary origin of the central portions of the Ri Tl-DNA of Agrobacterium tumefaciens. Plant Mol Biol 11: 731–744 (1988).

    Google Scholar 

  32. Maxam AM, Gilbert W: Sequencing end-labeled DNA with base-specific chemical cleavages. Enzymol 65: 499–560 (1980).

    Google Scholar 

  33. Maniatis T, Fritsch EF, Sambrook J (eds) Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory, NY (1982).

    Google Scholar 

  34. Mc Clure H. BA, Hagen G, Brown CS, Gee MA, Guilfoyle TJ: Transcription, organization, and sequence of an auxin-regulated gene cluster in soybean. Plant Cell 1: 229–239 (1989).

    Google Scholar 

  35. Messens E, Lenaerts A, Van Montagu M, Hedges RW: Genetic basis for opine secretion from crown gall tumor cells. Mol Gen Genet 199: 344–348 (1985).

    Google Scholar 

  36. Miller J: Experiments in Molecular Genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (1972).

    Google Scholar 

  37. Montoya A, Chilton M-D, Gordon MP, Sciaky D, Nester EW: Octopine and nopaline metabolism in Agrobacterium tumefaciens and crown gall tumor cells: role of plasmid genes. J Bact 78: 453–455 (1977).

    Google Scholar 

  38. Nilsson O, Crozier A, Schmülling T, Sandberg G, Olsson O: Indole-3-acetic acid homeostasis in transgenic tobacco plants expressing the Agrobacterium rhizogenes rolB gene. Plant J 3: 681–689 (1993).

    Google Scholar 

  39. Nuttley WM, Aitchison JD, Rachubinki RA: cDNA cloning and primary structure determination of the peroxisomal trifunctional enzyme hydratase-dehydrogenase-epimerase from the yeast Candida tropicalis pK233. Gene 69: 171–180 (1988).

    Google Scholar 

  40. Otten L, Canaday J, Gerard L-C, Fournier P, Crouzet P, Paulus F: Evolution of agrobacteria and their Ti plasmids: a review. Mol Plant-Microbe Interact 5: 279–287 (1992).

    Google Scholar 

  41. Paulus F, Otten L: Functional and mutated agrocinopine synthase genes on octopine T-DNAs. Mol Plant-Microbe Interact 16: 393–402 (1993).

    Google Scholar 

  42. Peltoketo H, Isomaa V, Mentausta O, Vihko R: Complete amino acid sequence of human placental 17a-hydroxysteroid dehydrogenase deduced from cDNA. FEBS Lett 239: 73–77 (1988).

    Google Scholar 

  43. Peoples OP, Sinskey AJ: Poly-beta-hydroxybutyrate biosynthesis in Alcaligenes eutrophus Ha6: characterization of the genes encoding beta-ketothiolase and acetoacetyl-CoA reductase. J Biol Chem 264: 15293–15297 (1989).

    Google Scholar 

  44. Petit A, David C, Dahl GA, Ellis JG, Guyon P, Casse-Dalbart F, Tempe J: Further extension of the opine concept: plasmids in Agrobacterium rhizogenes cooperate for opine degradation. Mol Gen Genet 190: 204–214 (1983).

    Google Scholar 

  45. Shapiro SK, Chou J, Richard FV, Casadaban MJ: New versatile plasmid vectors for expression of hybrid proteins coded by a cloned gene fused to lacZ gene sequences encoding an enzymatically active carboxy-terminal portion of α-galactosidase. Gene 25: 71–82 (1983).

    Google Scholar 

  46. Simon R, Priefer UB, Pühler A: A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in gram-negative bacteria. Bio/technology 1: 784–791 (1983).

    Google Scholar 

  47. Slightom JI, Durand-Tardif M, Jouanin L, Tepfer D: Nucleotide sequence analysis of TL-DNA of Agrobacterium rhizogenes agropine type plasmid. J Biol Chem 261: 108–119 (1986).

    Google Scholar 

  48. Spanier K, Shell J, Schreier PH: A functional analysis of T-DNA gene 6b: the fine tuning of cytokinin effects on shoot development. Mol Gen Genet 219: 209–216 (1989).

    Google Scholar 

  49. Staden R: The current status and portability of our sequence handling software. Nucl Acids Res 14: 217–234 (1986).

    Google Scholar 

  50. Teeri TH, Levslaiho H, Franck M, Uotila J, Heino P, Palva ET, Van Montagu M, Herrera-Estrella L: Gene fusions to lacZ reveal new expression patterns of chimeric genes in transgenic plants. EMBO J 8: 343–350 (1989).

    Google Scholar 

  51. Tinland B, Huss B, Paulus F, Bonnard G, Otten L: Agrobacterium tumefaciens 6b genes are strain-specific and affect the activity of auxin as well as cytokinin genes. Mol Gen Genet 219: 217–224 (1989).

    Google Scholar 

  52. Vanderleyden J, Desair J, De Meirsman C, Michiels K, Van Gool A, Jen G, Chilton M-D: Nucleotide sequence of the T-DNA region encoding transcript 6a and 6b of the pTiT37 Ti plasmid. Plant Mol Biol 7: 33–41 (1986).

    Google Scholar 

  53. Vieira J, Messing J: The pUC plasmids: an M23mp7-derived system for insertion mutagenesis and sequencing with synthetic universal primers. Gene 19: 259–268 (1982).

    Google Scholar 

  54. Wabiko H, Kagaya M, Sano H: Polymorphism of nopaline-type T-DNAs from Agrobacterium tumefaciens. Plasmid 25: 3–15 (1991).

    Google Scholar 

  55. Wierenga RK, Terpstra P, Hol WGJ: Prediction of the occurence of the ADP-binding βÓβ-fold in proteins, using an amino acid sequence fingerprint. J Mol Biol 187: 101–107 (1986).

    Google Scholar 

  56. Willmitzer L, Dhaese P, Schreier PH, Schmalenbach W, Van Montagu M, Schell J: Size, location and polarity of T-DNA-encoded transcripts in nopaline crown gall tumors: common transcripts in octopine and nopaline tumors. Cell 32: 1045–1056 (1983).

    Google Scholar 

  57. Zambryski P, Tempe J, Schell J: Transfer and function of T-DNA genes from Agrobacterium Ti and Ri plasmids in plants. Cell 56: 193–201 (1989).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Broer, I., Dröge-Laser, W., Barker, R.F. et al. Identification of the Agrobacterium tumefaciens C58 T-DNA genes e and f and their impact on crown gall tumour formation. Plant Mol Biol 27, 41–57 (1995). https://doi.org/10.1007/BF00019177

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00019177

Key words

Navigation