Skip to main content
Log in

Restoration of shooty morphology of a nontumorous mutant of Nicotiana glauca x N. langsdorffii by cytokinin and the isopentenyltransferase gene

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

The shooty morphology of a nontumorous amphidiploid mutant of Nicotiana glauca Grah. x N. langsdorffii Weinm. was restored by cytokinins, whether exogenously applied or endogenously produced by transformation of the mutant with a transfer DNA (T-DNA) cytokinin-biosynthesis gene (isopentenyltransferase; ipt). Auxins alone did not confer this effect. Similar transformation was not achieved for the parental species. In the case of transformation with the ipt gene, selection of the transformed tissues was based on its hormone-independent growth in the presence of the antibiotic kanamycin. Transformed tissues exhibited a shooty morphology, indistinguishable from that of wildtype genetic tumors N. glauca x N. langsdorffii. This altered phenotype was caused by the presence and constitutive expression of the ipt gene. The insertion and expression of this gene in transformed tissues was confirmed by using the polymerase chain reaction (PCR) technique as well as conventional molecular hybridization analysis. Expression of the ipt gene led to an elevated level of cytokinin in the transformed mutant tissues. This evidence supports the notion that genetic tumors are caused, at least in part, by elevated levels of cytokinin in interspecific hybrids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl K: Current protocols in molecular biology. John Wiley & Sons, New York (1987).

    Google Scholar 

  2. Baker RF, Idler KB, Thompson DV, Kemp JD: Nucleotide sequence of T-DNA region from the Agrobacterium tumefaciens octopine Ti plasmid pTi15955. Plant Mol Biol 2: 335–350 (1983).

    Google Scholar 

  3. Barry GF, Rogers SG, Fraley RT, Brand L: Identification of a cloned cytokinin biosynthetic gene. Proc Natl Acad Sci USA 81: 4776–4780 (1984).

    Google Scholar 

  4. Bayer MH: Genetic tumors: physiological aspects of tumor formation in interspecies hybrids. In: Kaul G, Schell J (eds) Molecular biology of plant tumors. Academic Press, New York (1982).

    Google Scholar 

  5. Bishop JM: The molecular genetics of cancer. Science 235: 305–311 (1987).

    PubMed  Google Scholar 

  6. Braun AC: A physiological basis for autonomous growth of the crown-gall tumor cell. Proc Natl Acad Sci USA 44: 344–349 (1958).

    Google Scholar 

  7. Braun AC: Plant tumors. In: Becker FF (ed) Cancer: A Comprehensive Treatise, Vol. 4. Plenum Press, New York (1978).

    Google Scholar 

  8. Budar F, Deboeck F, VanMontagu M, Hernalsteens JP: Introduction and expression of the octopine T-DNA oncogenes in tobacco plants and their progeny. Plant Sci 46: 195–206 (1986).

    Article  Google Scholar 

  9. Garfinkel DJ, Simpso RB, Ream LW, White FF, Gordon MP, Nester EW: Genetic analysis of crown-gall: fine structure map of the T-DNA by site-directed mutagenesis. Cell 27: 143–153 (1981).

    Article  PubMed  Google Scholar 

  10. Hamilton RH, Fall MZ: The loss of tumor-initiating ability in Agrobacterium tumefaciens by incubation at high temperature. Experientia 27: 229–230 (1971).

    PubMed  Google Scholar 

  11. Horsch RB, Fry JE, Hoffmann NL, Eichholtz D, Rogers SG, Fraley RT: A simple and general method for transferring genes into plants. Science 227: 1229–1231 (1985).

    Google Scholar 

  12. Izard D: Obtention et fixation de lignées tumorales et non tumorales à partir de mutations expérimentales de l'hybride N. glauca x N. langsdorffii. CR Acad Agric (France) 43: 325–327 (1957).

    Google Scholar 

  13. Kehr AE, Smith HH: Genetic tumors in Nicotiana hybrids. Brookhaven Symp Biol 6: 55–76 (1954).

    Google Scholar 

  14. Kung SD: Genetic tumors in Nicotiana. Bot Bull Acad Sinica 30: 231–240 (1989).

    Google Scholar 

  15. Kung SD, Feng XH, Bottino PJ, Barnett NM, Akada S, Xu YQ, Tso TC: The role of cytokinin in genetic tumorigenesis in Nicotiana. Bot Bull Acad Sinica 31: in press (1990).

  16. Maniatis T, Fritsch EF, Sambrook J: Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (1982).

    Google Scholar 

  17. Murashige T, Skoog F: A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15: 473–497 (1962).

    Google Scholar 

  18. Nacmias B, Ugolini S, Ricci MD, Pellegrini MG, Boggni P, Bettini P, Inze D, Buiatti M: Tumor formation and morphogenesis on different Nicotiana sp and hybrids induced by Agrobacterium tumefaciens T-DNA mutants. Dev Genet 8: 61–71 (1987).

    Google Scholar 

  19. Nagy F, Kay SA, Chua N-H: Analysis of gene expression in transgenic plants. In: Gelvin S, Schilperoort R (eds) Plant Molecular Biology Manual. Kluwer Academic Publishers, Dordrecht, The Netherlands (1988).

    Google Scholar 

  20. Nandi SK, deKlerk GJM, Parker CW, Palni LMS: Endogenous cytokinin levels and metabolism of zeatin riboside in genetic tumour tissues and non-tumourous tissues of tobacco. Physiol Plant. 78: 197–204 (1990).

    Article  Google Scholar 

  21. Reiss B, Sprengel R, Will H, Schaller H: A new sensitive method for qualitative and quantitative assay of neomycin phosphotransferase in crude cell extracts. Gene 30: 211–218 (1984).

    Article  PubMed  Google Scholar 

  22. Saiki RK, Scharf S, Faloona F, Mullis KB, Horn GT, Erlich HA, Arnheim N: Enzymatic amplification of β-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anaemia. Science 230: 1350–1354 (1985).

    PubMed  Google Scholar 

  23. Schiaky D, Thomashow MF: The sequence of the tms transcript 2 locus of the A. tumefaciens plasmid pTiA6 and characterization of the mutation in pTiA66 that is responsible for auxin attenuation. Nucl Acids Res 12: 1447–1461 (1984).

    PubMed  Google Scholar 

  24. Schell J: Transgenic plants as tools to study the molecular organization of plant genes. Science 237: 1176–1183 (1987).

    Google Scholar 

  25. Skoog F: Growth and organ formation in tobacco tissue culture. Am J Bot 31: 19–24 (1944).

    Google Scholar 

  26. Skoog F, Miller C: Chemical regulation of growth and organ formation in plant tissues cultured in vitro. Symp Soc Exp Biol 11: 118–130 (1957).

    Google Scholar 

  27. Smith HH: Genetic control of Nicotiana plant tumors. Trans NY Acad Sci, Ser. II 24: 741–746 (1962).

    Google Scholar 

  28. Smith HH: Recent cytogenetic studies in the genus Nicotiana. Adv Genet 14: 1–54 (1968).

    Google Scholar 

  29. Smith HH: Plant genetic tumors. Progr Exp Tumor Res 15: 138–164 (1972).

    PubMed  Google Scholar 

  30. Smith HH: The inheritance of genetic tumors in Nicotiana hybrids. J Hered 79: 277–283 (1988).

    Google Scholar 

  31. Smith HH, Stevenson HQ: Genetic control and radiation effects in Nicotiana tumors. Z Vererbungslehre 92: 100–118 (1961).

    Google Scholar 

  32. Thomashow MF, Knauf VC, Nester EW: Relationship between the limited and wide host range octopine type Ti plasmids of Agrobacterium tumefaciens. J Bact 146: 484–493 (1981).

    PubMed  Google Scholar 

  33. Thompson WF, Everett M, Polans NO, Jorgensen RA, Palmer JD: Phytochrome control of RNA levels in developing pea and mungbean leaves. Planta 158: 487–500 (1983).

    Google Scholar 

  34. VanHaute E, Joos J, Maes M, Warren G, VanMontagu M, Schell J: Intergeneric transfer and exchange recombination of restriction fragments cloned in pBR322: a novel strategy for the reversed genetics of the Ti plasmids of Agrobacterium tumefaciens. EMBO J 2: 411–417 (1983).

    PubMed  Google Scholar 

  35. VanOnckelen H, Prinsen E, Inze D, Rudelsheim P, VanLijsebettens M, Follin A, Schell J, VanMontagu M, DeGreef J: Agrobacterium T-DNA gene 1 code for tryptophan-2-monooxygenase activity in tobacco crown gall cells. FEBS Lett 198: 357–360 (1986).

    Article  Google Scholar 

  36. Vervliet G, Holsters M, Teuchy H, VanMontagu M, Schell J: Characterization of different plaque forming and defective temperate phages in Agrobacterium strains. J Gen Virol 26: 33–48 (1975).

    PubMed  Google Scholar 

  37. Vilaine F, Charbonnier C, Casse-Delbart F: Further insight concerning the TL region of the Ri plasmid of Agrobacterium rhizogenes strain A4: Transfer of a 1.9 kb fragment is sufficient to induce transformed roots on tobacco leaf fragments. Mol Gen Genet 210: 111–115 (1987).

    Google Scholar 

  38. Weiler EW, Eberle J, Mertens R, Atzorn R, Feverabend M, Jourdan PS, Arnscheidt A, Wieczorek U: Antisera and monoclonal antibody-based immunoassay of plant hormones. In: Wang TL (ed) Immunology in Plant Science. Cambridge University Press, Cambridge, UK (1986).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Feng, XH., Dube, S.K., Bottino, P.J. et al. Restoration of shooty morphology of a nontumorous mutant of Nicotiana glauca x N. langsdorffii by cytokinin and the isopentenyltransferase gene. Plant Mol Biol 15, 407–420 (1990). https://doi.org/10.1007/BF00019158

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00019158

Key words

Navigation