Skip to main content
Log in

Rapid decomposition of fish bones in Lake Erie sediments

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

In an effort to explain the rarity of fish bones in the Great Lakes sediments, the degradation of ground fresh fish bones in microcosms containing Lake Erie sediments has been studied. The rapid build-up of phosphorus in the aqueous phase points to the great instability of the bone mineral in these sediments, while the actual analysis of the sediments shows that 10–50% of the added bone was degraded in three weeks. The decomposition rate was independent of the redox conditions of the microcosm, and was biologically mediated. Also, the incongruent dissolution of the bone apatite entailed the secondary formation of vivianite (ferrous phosphate) and other calcium and aluminocalcium phosphates. Calculations suggest that fish debris account for well over 10–20% of the P flux to the sediments in some nearshore areas. Since most of this P is quickly remineralized, the contribution of carrion to the differences in the quality of nearshore and offshore waters of the Lower Great Lakes must remain an intriguing question.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Atlas, E. L. & Pytkowicz, R. M., 1977. Solubility behavior of apatites in seawater. Limnol. Oceanogr. 22: 290–300.

    Article  CAS  Google Scholar 

  • Ayyakkanu, K. & Chandramohan, D., 1971. Occurrence and distribution of phosphate solubilizing bacteria and phosphatase in marine sediments at Porto Nova. Mar. Biol. 11: 201–205.

    Article  Google Scholar 

  • Chien, S. H. & Black, C. A., 1975. The activity concept of phosphate-rock solubility. Soil Proc. Sci. Soc. Am. 39: 856–858.

    Article  CAS  Google Scholar 

  • Chiou, C. J. & Boyd, C. E., 1974. The utilization of phosphorus from muds by phytoplanktor, Scenedesmus dimorphus, and the significance of these findings to the practice of pond fertilization. Hydrobiologia 45: 345–355.

    Article  CAS  Google Scholar 

  • Clark, J. S., 1955. Solubility criteria for the existence of hydroxyapatite. Can. J. Chem. 33: 1696–1700.

    Article  CAS  Google Scholar 

  • Durbin, A. G., Nixon, S. W. & Oviatt, C. A., 1979. Effects of the spawning migration of the alewife, Alosa pseudoharengus, on freshwater ecosystems. Ecology 60: 8–17.

    Article  Google Scholar 

  • Gregory, T. M., Moreno, E. C. & Brown, W. E., 1970. Solubility of CaHPO4 · 2H2O in the system Ca(OH)2-H3PO4-H2O at 5, 15, 25 and 37.5°C. J. Res. natn. Bur. Stand. A74: 461–475.

    Article  CAS  Google Scholar 

  • Greenwood, M. R., 1970. State-Federal Lake Michigan alewife control investigation. Fish Wild. Serv. U.S. Dep. Interior, Ann Arbor, Michigan, 5 pp.

    Google Scholar 

  • Harwood, J. E., Van Steenderen, R. A. & Kuhn, A. L., 1969. A rapid method for orthophosphate analysis at high concentrations in water. Wat. Res. 3: 417–425.

    Article  CAS  Google Scholar 

  • Kemp, A. L. W. & Thomas, R. L., 1975. Impact of man's activities on the chemical composition of the sediments of Lakes Ontario, Erie and Huron, Wat. Air Soil Pollut. 5: 469–490.

    Article  Google Scholar 

  • Kitchell, J. F., Foonce, J. F. & Tennis, P. S., 1975. Through fishes. Verb. int. Ver. Limnol. 19: 2478–2484.

    Google Scholar 

  • Kitchell, J. F., O'Neill, R. V., Webb, D., Gallepp, G. W., Bartell, S. M., Koonce, J. F. & Ausmus, F. S., 1979. Consumer regulation of nutrient cycling. BioScience 29: 28–34.

    Article  Google Scholar 

  • Levinskas, G. J. & Neumann, W. F., 1955. The solubility of bone mineral. 1. Solubility studies of synthetic hydroxyapatite. J. Phys. Chem. Wash. 59: 164–168.

    Article  CAS  Google Scholar 

  • Moreno, E. C., Gregory, T. M. & Brown, W. E., 1968. Preparation and solubility of hydroxyapatite. J. Res. natn. Bur. Stand. A72: 773–782.

    Article  CAS  Google Scholar 

  • Muromtsev, G. S., 1958. The dissolving action of some root and soil microorganisms on insoluble calcium phosphates. Agrobiologiya 5: 9–14.

    Google Scholar 

  • Nakashima, B. S. & Leggett, W. C., 1980. The role of fishes in the regulation of phosphorus available in lakes. Can. J. Fish. aquat. Sci. 37: 1540–1549.

    Article  Google Scholar 

  • Niewolak, S., 1971. The microbial decomposition of tribasic calcium phosphate in the Ilawa lakes. Acta hydrobiol. 13: 131–145.

    CAS  Google Scholar 

  • Nriagu, J. O., 1976. Phosphate-clay mineral relations in soils and sediments. Can. J. Earth Sci. 13: 7.7–736.

    Article  Google Scholar 

  • Nriagu, J. O. & Dell, C. I., 1974. Diagenetic formation of iron phosphates in recent sediments. Am. Miner. 59: 934–946.

    CAS  Google Scholar 

  • Richey, J. E., Perkins, M. A. & Goldman, C. R., 1975. Effects of kokanne salmon (Oncorhyncus nerka) decomposition on the ecology of a subalpine stream. J. Fish. Res. Bd Can. 32: 817–820.

    Article  CAS  Google Scholar 

  • Rootare, H. M., Dietz, V. R. & Carpenter, F. G., 1962. Solubility product phenomena in hydroxyapatite-water systems. J. Colloid Sci. 17: 179–206.

    Article  CAS  Google Scholar 

  • Sagher, A., Harris, R. F. & Armstrong, D. E., 1975. Biological availability of sediment phosphorus to microorganisms. Tech. Rep WISCWRC-75–01, Wat. Resour. Center, Univ. Wis., Madison, 5 pp.

    Google Scholar 

  • Smith, A. N.,Posner, A. M. & Quirk, J. P., 1974. Incongruent dissolution and surface complexes of hydroxyapatite. J. Colloid Interface Sci. 48: 442–449.

    Article  CAS  Google Scholar 

  • Smith, E. A. H., Mayfield, C. I. & Wong, P. T. S., 1977. Colonization and decomposition of fish bone material in natural and synthetic aqueous solutions. J. Fish. Res. Bd Can. 34: 2176–2184.

    Article  CAS  Google Scholar 

  • Sperber, J. I., 1958. Solution of apatite by soil microorganisms producing organic acids. Austr. J. agric. Res. 9: 782–787.

    Article  CAS  Google Scholar 

  • Suess, E., 1981. Phosphate regeneration from sediments of the Peru continental margin by dissolution of fish debris. Geochim. cosmochim. Acta 45: 577–588.

    Article  CAS  Google Scholar 

  • Vallentyne, J. R., 1960. On fish remains in lacustrine sediments. Am. J. Sci. A258: 344–349.

    Google Scholar 

  • Wier, D. R., Chien, S. H. & Black, C. A., 1971. Solubility of hydroxyapatite. Soil Sci. 3: 107–112.

    Article  Google Scholar 

  • Williams, J. D. H., Shear, H. & Thomas, R. L., 1980a. Availability to Scenedesmus quadricauda of different forms of phosphorus in sedimentary materials from the Great Lakes. Limnol. Oceanogr. 25: 1–11.

    Article  CAS  Google Scholar 

  • Williams, J. D. H., Mayer, T. & Nriagu, J. O., 1980b. Extractability of phosphorus from phosphate minerals common in soils & sediments. Soil Sci. Soc. Am. J. 44: 462–465.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nriagu, J.O. Rapid decomposition of fish bones in Lake Erie sediments. Hydrobiologia 106, 217–222 (1983). https://doi.org/10.1007/BF00008119

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00008119

Keywords

Navigation