Skip to main content
Log in

Direct and indirect influences of crustacean zooplankton on bacterioplankton of Lake Constance

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Herbivorous crustacean zooplankton may influence bacterial populations of lakes directly by grazing on them or indirectly by grazing on algae. In Lake Constance a regularly observed decrease of bacterial density during periods of high abundance of cladocerans (clearwater phase) indicated bacterial grazing losses. However, cladoceran grazing on bacteria appeared to be less efficient than on algae. Moreover, cladocera reduced grazing pressure on bacteria by grazing on bacterivorous flagellates. Additionally, a shift of bacterial composition from an originally higher percentage of filamentous and aggregate growth forms towards a population of homogenously distributed small single celled bacteria was observed regularly at the beginning of the clearwater phase. Transient increases of bacterial abundance and productivity coinciding with the increase of cladocera at the end of the algal spring bloom were interpreted as field indications of indirect bacteria-zooplankton interactions due to crustacean grazing on phytoplankton. The release of organic carbon during grazing of crustacea on algae was considered as explanation for the observed stimulation of bacterial populations. Thereby, additional, otherwise inaccessible algal carbon would be made available to bacteria by zooplankton. Experimental support for this hypothesis was given by showing that bacteria were able to respond to crustacean grazing on algae by enhanced growth and activities. The possible impact of these direct and indirect crustacea-bacteria interactions on the abundance, activity and composition of bacterioplankton as well as on the structure and function of the total planktonic community is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andersen, O. K., J. C. Goldman, D. A. Caron & M. R. Dennett, 1986. Nutrient cycling in a marine microflagellate food chain: III. Phosphorus dynamics. Mar. Ecol. Progr. Ser. 31: 47–55.

    CAS  Google Scholar 

  • Boraas, M. E., 1986. Relationship between densities and sizes of phagotrophic microflagellates and cyanobacteria in Lake Michigan. IV. Int. Congr. Ecol., Syracuse, New York, August 10–16. Abstracts p. 96.

  • Berman, T., 1985. Uptake of (32P) orthophosphate by algae and bacteria in Lake Kinneret. J. Plankton Res. 7: 71–84.

    CAS  Google Scholar 

  • Berman, T. & C. Gerber, 1980. Differential filtration studies of carbon flux from living algae to microheterotrophs, microplankton size distribution and respiration in Lake Kinneret. Microb. Ecol. 6: 189–198.

    Article  Google Scholar 

  • Berman, T. & B. Kaplan, 1984. Diffusion chamber studies of carbon from living algae to heterotrophic bacteria. Hydrobiologia 108: 127–132.

    Article  Google Scholar 

  • Bjørnsen, P. K., J. P. Larsen, O. Geertz-Hansen & M. Olesen, 1986. A field technique for the determination of zooplankton grazing on natural bacterioplankton. Freshwater Biology 16: 245–253.

    Article  Google Scholar 

  • Børsheim, K. Y. & Y. Olsen, 1984. Grazing activities by Daphnia pulex on natural populations of bacteria and algae. Verh. Int. Ver. Limnol. 22: 644–648.

    Google Scholar 

  • Brendelberger, H., 1985: Filter mesh-size and retention efficiency for small particles: comparative studies with cladocera. Arch. Hydrobiol. Ergebn. Limnol. 21: 135–146.

    Google Scholar 

  • Cole, J. J., 1982: Interactions between bacteria and algae in aquatic ecosystems. Ann. Rev. Ecol. Syst. 13: 291–314.

    Article  Google Scholar 

  • Cole, J. J., G. E. Likens & J. E. Hobbie, 1984. Decomposition of planktonic algae in an oligotrophic lake. Oikos 42: 257–266.

    CAS  Google Scholar 

  • Crumpton, W. G. & R. G. Wetzel, 1980. Effects of differential growth and mortality on the seasonal succession of phytoplankton populations in Lawrence Lake, Michigan. Ecology 63: 1729–1739.

    Article  Google Scholar 

  • Currie, D. J. & J. Kalff, 1984. A comparison of the abilities of freshwater algae and bacteria to acquire and retain phosphorus. Limnol. Oceanogr. 29: 298–310.

    CAS  Google Scholar 

  • De Mott, W. R., 1985. Relation between filter mesh-size, feeding mode and capture efficency for cladocera feeding on ultrafine particles. Arch. Hydrobiol. Ergebn. Limnol. 21: 125–134.

    Google Scholar 

  • Dicks, J. W. & D. W. Tempest, 1966. The influence of temperature and growth rate on the quantitative relationship between potassium, magnesium, phosphorus and ribonucleic acid of Aerobacter aerogenes growing in a chemostat. J. Gen. Microbiol. 45: 547–557.

    CAS  Google Scholar 

  • Fenchel, T., 1986. The ecology of heterotrophic microflagellates. Adv. Microb: Ecol. 9: 57–97.

    Google Scholar 

  • Fenchel, T., 1982. Ecology of heterotrophic flagellates. II. Bioenergetics and growth. Mar. Ecol. Progr. Ser. 8: 225–231.

    Google Scholar 

  • Fuhs, G. W., S. D. Demmerle, E. Canelli & M. Chen, 1972. Characterization of phosphorus-limited plankton algae (with reflection of the limiting nutrient concept). Am. Soc. Limnol. Oceanogr. Spec. Symp. 1: 113–133.

    CAS  Google Scholar 

  • Geller, W., 1981. Stabile Zeitmuster in der Planktonsukzession des Bodensees (Überlinger See). Verh. Gesellsch. Ökol. 8: 373–382.

    Google Scholar 

  • Geller, W. & Müller H., 1981. The filtration apparatus of cladocera: filter mesh-sizes and their implications on food selectivity. Oecologia (Berlin) 49: 316–321.

    Article  Google Scholar 

  • Güde, H., 1979. Grazing by protozoa as selection factor for activated sludge bacteria. Microb. Ecol. 5: 225–237.

    Article  Google Scholar 

  • Güde, H., 1985. Influence of phagotrophic processes on the regeneration of nutrients in two-stage continuous culture systems. Microb. Ecol. 11: 193–204.

    Article  Google Scholar 

  • Güde, H., 1986. Loss processes influencing growth of planktonic bacterial populations in Lake Constance. J. Plankton Res. 8: 795–810.

    Google Scholar 

  • Güde, H., 1987: Incorporation of 14C-glucose, 14C-amino acids and 3H-thymidine by different size fractions of aquatic microorganisms. Arch. Hydrobiol. Ergebn. Limnol. (in press).

  • Güde, H., B. Haibel & H. Müller, 1985. Development of planktonic bacterial populations in Lake Constance (Bodensee-Obersee) Arch. Hydrobiol. 105: 59–77.

    Google Scholar 

  • Hansen, L., G. F. Krog & M. Søndergaard, 1986. Decomposition of lake phytoplankton. I. Dynamics of short-term decomposition. Oikos 46: 37.

    CAS  Google Scholar 

  • Hessen, D. O., 1985. Filtering structures and particle size selection in coexisting cladocera. Oecologia (Berl.) 66: 368–372.

    Article  Google Scholar 

  • Hollibaugh, J. T., J. A. Fuhrman & F. Azam, 1981. Radioactive labelling of natural assemblages of bacterioplankton for use in trophic studies. Limnol. Oceanogr. 19: 995–998.

    Google Scholar 

  • Infante, A. & A. H. Litt, 1985. Differences between two species of Daphnia in the use of 10 species of algae in Lake Washington. Limnol. Oceanogr. 30: 1053–1059.

    Google Scholar 

  • Kimmel, B. L., 1983. Size distribution of planktonic autotrophy and microheterotrophy: Implications for organic carbon flow in reservoir food webs. Arch. Hydrobiol. 97: 303–314.

    Google Scholar 

  • Knoechel, R. & J. Kalff, 1978. An in situ study on the productivity and population dynamics of five freshwater planktonic diatom species. Limnol. Oceanogr. 23: 195–218.

    Google Scholar 

  • Lampert, W., 1974. A method for determining food selection by zooplankton. Limnol. Oceanogr. 23: 195–218.

    Google Scholar 

  • Lampert, W., 1977. Studies on the carbon balance of Daphnia pulex De Geer as related to environmental conditions. II. The dependence of carbon assimilation on animal size, temperature, food concentration and diet species. Arch. Hydrobiol. Suppl. 48: 310–335.

    CAS  Google Scholar 

  • Lampert, W., 1978a. Release of dissolved organic carbon by grazing zooplankton. Limnol. Oceanogr. 23: 195–218.

    Google Scholar 

  • Lampert, W., 1978b. A field study on the dependence of the fecundity of Daphnia sp. on food concentration. Oecologia (Berl.) 36: 363–369.

    Article  Google Scholar 

  • Lampert, W. & U. Schober, 1978. Das regelmäβige Auftreten von Frühjahrsmaximum and “Klarwasserstadium” im Bodensee als Folge von klimatischen Bedingungen and Wechselwirkungen zwischen Phyto-und Zooplankton. Arch. Hydrobiol. 82: 364–386.

    Google Scholar 

  • Lampert, W., W. Fleckner, H. Rai & B. Taylor, 1986. Phytoplankton control by grazing zooplankton: a study on the spring clearwater phase. Limnol. Oceanogr. 31: 478–490.

    Google Scholar 

  • Müller, H., 1972. Wachstum and Phosphatbedarf von Nitzschia actinastroides (Lemur) v. Goor in statischer and homokontinuierlicher Kultur unter Phosphat-Limitierung. Arch. Hydrobiol. Suppl. 38: 399–484.

    Google Scholar 

  • Olsen, Y., M. M. Varum & A. Jensen, 1986. Some characteristics of the carbon compounds released by Daphnia. J. Plankton Res. 8: 505–518.

    CAS  Google Scholar 

  • Pace, M. L., K. G. Porter & Y. S. Feig, 1983. Species and age specific differences in bacterial utilization by two coocurring cladocerans. Ecology 64: 1145–1156.

    Article  Google Scholar 

  • Pedros-Alio, M. L. & T. D. Brock, 1983. The impact of zooplankton feeding on the epilimnic bacteria of an eutrophic lake. Freshwater Biology 13: 227–239.

    Article  Google Scholar 

  • Peterson, B. J., J. E. Hobbie & J. F. Haney, 1978. Daphnia grazing on natural bacteria. Limnol. Oceanogr. 23: 1039–1044.

    Article  Google Scholar 

  • Reynolds, C. S., J. M. Tompson, A. J. D. Ferguson & W. W. Wiseman, 1982. Loss processes in the population of phytoplankton maintained in closed systems. J. Plankton Res. 4: 561–600.

    Google Scholar 

  • Riemann, B., 1985. Potential importance of fish predation and zooplankton grazing on natural populations of freshwater bacteria. Appl. Environm. Microbiol. 50: 187–193.

    Google Scholar 

  • Riemann, B. & S. Bosselmann, 1984. Daphnia grazing on natural populations of lake bacteria. Verh. Int. Ver. Limnol. 22: 795–799.

    Google Scholar 

  • Riemann, B., N. O. G. Jørgensen, W. Lampert & J. A. Fuhrman, 1986. Zooplankton induced changes in dissolved free amino acids and in production rates of freshwater bacteria. Microb. Ecol. 12: 247–258.

    Article  CAS  Google Scholar 

  • Schoenberg, S. A. & A. E. Maccubin, 1985. Relative feeding rates on free and particle bound bacteria by freshwater macrozooplankton. Limnol. Oceanogr. 30: 1084–1090.

    Google Scholar 

  • Sherr B. F. & E. B. Sherr, 1984. Role of heterotrophic protozoa in carbon and energy flow in aquatic ecosystems. In: Klug, M. J. & Reddy, C. A. (eds). Current perspectives in microbial ecology. ASM, Washington, pp 412–423.

    Google Scholar 

  • Sherr, B. F., E. B. Sherr & T. Berman, 1983. Grazing, growth and ammonium excretion rates of a heterotrophic microflagellate fed with four species of bacteria. Appl. Environm. Microbiol. 45: 1196–1201.

    Google Scholar 

  • Šimek, K., 1986. Bacterial activity in a reservoir determined by autoradiography and its relationships to phyto-and zooplankton. Int. Rev. Ges. Hydrobiol. 71: 593–61.

    Google Scholar 

  • Simon, M., 1987. The contribution of small and large free-living and attached bacteria to the organic matter metabolism of Lake Constance. Limnol. Oceanogr. 39: 591–607.

    Google Scholar 

  • Simon, M. & M. M. Tilzer, 1987. Bacterial responses to seasonal primary production and phytoplankton biomass in Lake Constance J. Plankton Res. 9: 535–552.

    Google Scholar 

  • Toth, G. L., 1980. The use of dialyzing sacks in estimation of production of bacterioplankton and phytoplankton. Arch. Hydrobiol. 81: 474–482.

    Google Scholar 

  • Vogler, P., 1965. Beiträge zur Phosphatanalytik in der Limnologie. II. Die Bestimmung des gelösten Orthophosphats. Fortschritte Wasserchemie Grenzgebiete 2: 109–119.

    CAS  Google Scholar 

  • Wright, R. T. & R. B. Coffin, 1984. Factors affecting bacterioplankton densitiy and productivity in salt marsh estuaries. In: Klug, M. J. & Reddy, C. A. (eds). Current perspectives in microbial ecology. ASM, Washington, pp. 485–494.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Güde, H. Direct and indirect influences of crustacean zooplankton on bacterioplankton of Lake Constance. Hydrobiologia 159, 63–73 (1988). https://doi.org/10.1007/BF00007368

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00007368

Keywords

Navigation