Skip to main content
Log in

Chlorophyll budget in a productive tropical pond: algal production, sedimentation, and grazing by microzooplankton and rotifers

  • III. Community ecology
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Chlorophyll a and pheopigment standing stocks and fluxes were used during a two weeks colonization experiment in a productive tropical pond (Layo, Côte d'Ivoire) in order to establish a chlorophyll budget. The experiment started from an azoïc state (the pond was dried, limed and progressively filled with ground water). Algal production was the only input to the phytoplanktonic system, while grazing and algal sedimentation were the main outputs. Chlorophyll a reflected the algal biomass, and degradation pigments were considered as an index of grazing by zooplankton (here, protozoans and rotifers). An estimation of the input through the algal growth rate was performed for the two main biological events observed during the study. The first algal bloom, with a large picoplankton participation, was mainly regulated by microzooplankton (increase of the peak) and rotifers (decrease of the peak). The second bloom (exclusively nanoplankton) was regulated by rotifers (increase) and by sedimentation of living cells (decrease). This last process was related to a sudden exhaustion of ammonia in the water column. Because of the time-lag between algal proliferation and zooplanktonic bloom, the phytoplanktonic biomass was able to be adjusted according to the availability of nutrients. This self-regulation took the form of sinking of active algal cells, resulting in a transient reduction of the food available for rotifers. This process had drastic consequences in these shallow waters, since a major part of the phytoplankton produced was removed from the pelagic system. For an optimal exploitation of the natural resources of an aquaculture pond, a study of the equilibrium nutrients-phytoplankton-zooplankton would provide a basis for artificial intervention, with a view to limit the impact of this mode of natural regulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allan, J. D., 1976. Life history patterns in zooplankton. Am Nat. 110: 165–180.

    Google Scholar 

  • Arfi, R., D. Guiral & J. P. Torréton, 1991. Natural recolonization in a productive tropical pond, day to day variations in the photosynthetic parameters. Aquat. Sci. 53: 39–54.

    Google Scholar 

  • Azam, F. T., J. G. Fenchel, J. S. Gray, L. A. Meyer-Reil & F. Thingstad, 1983. The ecological role of water-column microbes in the sea. Mar. Ecol. Prog. Ser. 10: 257–263.

    Google Scholar 

  • Barlow R. G., P. H. Burkill & R. F. C. Mantoura, 1988. Grazing and degradation of algal pigments by marine protozoan Oxyrrhis marina. J. Exp. Mar. Biol. Ecol. 119: 119–129.

    Google Scholar 

  • Bienfang, P. K., 1980. Phytoplankton sinking rates in oligotrophic waters off Hawaii, USA. Mar. Biol. 61: 69–77.

    Google Scholar 

  • Bonin, D. J., M. R. Droop, S. Y. Maestrini & M. C. Bonin, 1986. Physiological features of six micro-algae to be used as indicators of seawater quality. Cryptogamie, Algologie 7: 23–83.

    Google Scholar 

  • Bonou, C., 1990. Etude de la productivité planctonique dans un étang d'aquaculture en milieu saumâtre tropical. Thèse doct, 1MSP Toulouse, 210 pp.

  • Boraas, M. E., C. C. Remsen & D. D. Seale, 1985. Phagotrophic flagellate populations in Lake Michigan, use of image analysis to determine numbers and size distribution. Eos 66: 1299.

    Google Scholar 

  • Burkill, P. H., R. F. C. Mantoura, C. A. Llewellyn & N. J. P. Owens, 1987. Microzooplankton grazing and selectivity of phytoplankton in coastal waters. Mar. Biol. 93: 581–590.

    Google Scholar 

  • Burns, N. M. & F. Rosa, 1980. In situ measurement of the settling velocity of organic carbon particles and 10 species of phytoplankton. Limnol. Oceanogr. 25: 855–864.

    Google Scholar 

  • Caron, D. A., F. R. Pick & D. R. S. Lean, 1985. Chroococcoid cyanobacteria in Lake Ontario, vertical and seasonal distributions during 1982. J. Phycol. 21: 171–175.

    Google Scholar 

  • Conover, R. J., R. Durvasula, S. Roy & R. Wang, 1986. Probable loss of chlorophyll-derived pigments during passage through the gut of zooplankton, and some of the consequences. Limnol. Oceanogr. 3: 878–887.

    Google Scholar 

  • Coté, B. & T. Platt, 1983. Day to day variations in the spring-summer photosynthetic parameters of coastal marine phytoplankton. Limnol. Oceanogr. 28: 320–344.

    Google Scholar 

  • Daley, R. J., 1973. Experimental characterization of lacustrine chlorophyll diagenesis. II. Bacterial, viral and herbivore grazing effects. Mar. Ecol. Prog. Ser. 9: 35–42.

    Google Scholar 

  • Dam, G. D. & W. T. Peterson, 1988. The effect of temperature on the gut clearance rate constant of planktonic copepods. J. exp. mar. Biol. Ecol. 123: 1–14.

    Google Scholar 

  • Eppley, R. W., R. W. Holmes & J. D. H. Strickland, 1967. Sinking rates of marine phytoplankton measured with a fluorometer. J. exp. mar. Biol. Ecol. 1: 191–208.

    Google Scholar 

  • Fahnenstiel, G. L., L. Sicko-Goad, D. Scavia & E. F. Stoermer, 1986. Importance of picoplankton in Lake Superior. Can. J. Fish. aquat. Sci. 43: 235–240.

    Google Scholar 

  • Fenchel, T., 1982. Ecology of heterotrophic microflagellates. I. Some important forms and their functional morphology. Mar. Ecol. prog. Ser. 8: 211–223.

    Google Scholar 

  • Fenchel, T., 1982. Ecology of heterotrophic microflagellates. II; Bioenergetics and growth. Mar. Ecol. prog. Ser. 8: 225–231.

    Google Scholar 

  • Goldman, J. C. & D. A. Caron, 1985. Experimental studies on an omnivorous microflagellate: implications for grazing and nutrient regeneration in the marine microbial food chain. Deep Sea Res. 32: 889–915.

    Google Scholar 

  • Grassé, P. P., 1965. Traité de zoologie, tome IV (III). Masson, Paris, 1496 pp.

    Google Scholar 

  • Hem, S., M. Legendre, L. Trebaol, A. Cisse & Y. Moreau, 1993. Recherches sur les principales espèces d'intérêt aquacole en milieu lagunaire. Durand, J. R., P. Dufour & S. G. Zabi (eds), Environnement et ressources aquatiques de Côte d'Ivoire. 2 — Le milieu lagunaire. Editions de l'ORSTOM, in press.

  • Herbland, A., 1988. The deep phaeopigments maximum in the ocean: reality or illusion. In Rothschild, B. J. (ed.), Toward a Theory on biological-Physical Interaction in the World Ocean, Kluwer Academic Publishers: 157–172.

  • Jeffrey, S. W., 1974. Profiles of photosynthetic pigments in the ocean using the thin layer chromatography. Mar. Biol. 26: 101–110.

    Google Scholar 

  • Lännergren, C., 1979. Buoyancy of natural populations of marine phytoplankton. Mar. Biol. 54: 1–10.

    Google Scholar 

  • Legendre, M., M. Pagano & L. Saint-Jean, 1987. Peuplements et biomasse zooplanctonique dans des étangs de pisciculture lagunaire Layo, Côte d'Ivoire. Etude de la recolonisation après la mise en eau. Aquaculture 67: 321–341.

    Google Scholar 

  • Litaker, W., C. S. Duke, B. E. Kenney & J. Ramus, 1988. Diel chl a and phaeopigment cycles in a shallow tidal estuary, potential role of microzooplankton grazing. Marine Ecol. prog. Ser. 47: 259–270.

    Google Scholar 

  • Lopez, M. D. G., M. E. Huntley & P. F. Sykes, 1988. Pigment destruction by Calanus pacificus: impact on the estimation of water column fluxes. J. Plankton Res. 10: 715–734.

    Google Scholar 

  • Lorenzen, C. J., 1981. Chlorophyll b in the ocean. Deep Sea Res. 28: 1049–1056.

    Google Scholar 

  • Lorenzen, C. J. & N. A. Welschmeyer, 1983. The in situ sinking rates of herbivore fecal pellets. J. Plankton Res. 5: 929–933.

    Google Scholar 

  • Lorenzen, C. J., N. A. Welschmeyer, A. E. Copping & M. Vernet, 1983. Sinking rates of organic particulates. Limnol. Oceanogr. 28: 766–769.

    Google Scholar 

  • Morel, A., 1978. Available, usable and stored radiant energy in relation to marine photosynthesis. Deep Sea Res. 25: 673–688.

    Google Scholar 

  • Parsons, T. R., Y. Maita & C. M. Lalli, 1984. A manual of chemical and biological methods for seawater analysis. Pergamon Press, New York.

    Google Scholar 

  • Pilarska, J., 1977. Ecophysiological studies on Brachionus rubens Ehrbg Rotatoria. I. Food selectivity and feeding rate. Pol. Arch. Hydrobiol. 24: 319–328.

    Google Scholar 

  • Pourriot, R. & P. Champ, 1982. Ecologie du plancton des eaux continentales. Pourriot, R. ed., Masson, Paris, 198 pp.

    Google Scholar 

  • Shuman, F. R. & C. J. Lorenzen, 1975. Quantitative degradation of chlorophyll by a marine herbivore. Limnol. Oceanogr. 20: 580–586.

    Google Scholar 

  • SooHoo, J. B. & D. A. Kiefer, 1982a. Vertical distribution of phaeopigments. — I. A simple grazing and photooxidative scheme for small particles. Deep-Sea Res. 29: 1539–1551.

    Google Scholar 

  • SooHoo, J. B. & D. A. Kiefer, 1982b. Vertical distribution of phaeopigments. — Il. Rates of production and kinetics of photooxidation. Deep-Sea Res. 29: 1553–1563.

    Google Scholar 

  • Stoecker, D. K., 1984. Particles production by phytoplanktonic ciliates. Limnol. Oceanogr. 29: 930–940.

    Google Scholar 

  • Titman, D. & P. Kilham, 1976. Sinking in freshwater phytoplankton, some ecological implications of cell nutrient status and physical mixing processes. Limnol. Oceanol. 21: 409–417.

    Google Scholar 

  • Vernet, M. & C. J. Lorenzen, 1987. The relative abundance of pheophorbide a and pheophytin a in temperate marine waters. Limnol. Oceanogr. 32: 352–358.

    Google Scholar 

  • Waltz, N., 1983. Continuous culture of the pelagic rotifer Keratella cochlearis and Brachionus angularis. Arch. Hydrobiol. 98: 70–92.

    Google Scholar 

  • Welschmeyer, N. A., A. E. Copping, M. Vernet& C. J. Lorenzen, 1984. Diel fluctuation in zooplankton grazing rate as determined from the downward vertical flux of pheopigments. Mar. Biol. 83: 263–270.

    Google Scholar 

  • Welschmeyer, N. A. & C. J. Lorenzen, 1985. Chlorophyll budgets, zooplankton grazing and phytoplankton growth in a temperate fjord and the Central Pacific gyres. Limnol. Oceanogr. 30: 1–21.

    Google Scholar 

  • Yentsch, S. & D. W. Menzel, 1963. A method for the determination of phytoplankton chlorophyll a and phaeophytin by fluorescence. Deep Sea Res. 10: 221–231.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arfi, R., Guiral, D. Chlorophyll budget in a productive tropical pond: algal production, sedimentation, and grazing by microzooplankton and rotifers. Hydrobiologia 272, 239–249 (1994). https://doi.org/10.1007/BF00006524

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00006524

Key words

Navigation