Skip to main content
Log in

Multivariate analysis of benthic invertebrate communities: the implication of choosing particular data standardizations, measures of association, and ordination methods

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Benthic invertebrate data from thirty-nine lakes in south-central Ontario were analyzed to determine the effect of choosing particular data standardizations, resemblance measures, and ordination methods on the resultant multivariate summaries. Logarithmic-transformed, 0–1 scaled, and ranked data were used as standardized variables with resemblance measures of Bray-Curtis, Euclidean distance, cosine distance, correlation, covariance and chi-squared distance. Combinations of these measures and standardizations were used in principal components analysis, principal coordinates analysis, non-metric multidimensional scaling, correspondence analysis, and detrended correspondence analysis. Correspondence analysis and principal components analysis using a correlation coefficient provided the most consistent results irrespective of the choice in data standardization. Other approaches using detrended correspondence analysis, principal components analysis, principal coordinates analysis, and non-metric multidimensional scaling provided less consistent results. These latter three methods produced similar results when the abundance data were replaced with ranks or standardized to a 0–1 range. The log-transformed data produced the least consistent results, whereas ranked data were most consistent. Resemblance measures such as the Bray-Curtis and correlation coefficient provided more consistent solutions than measures such as Euclidean distance or the covariance matrix when different data standardizations were used. The cosine distance based on standardized data provided results comparable to the CA and DCA solutions. Overall, CA proved most robust as it demonstrated high consistency irrespective of the data standardizations. The strong influence of data standardization on the other ordination methods emphasizes the importance of this frequently neglected stage of data analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aitchison, J, 1984. The Statistical Analysis of Compositional Data. Chapman and Hall. London.

    Google Scholar 

  • Allison, W. R. & H. H. Harvey, 1981. Methods for assessing the benthos of acidifying lakes. In Proceedings of a Symposium on Acid Precipitation on Benthos: 1–13.

  • Allison, W. R. & H. H. Harvey, 1988. Composition, distribution and standing crop of the benthos in a shallow lake. Verh. int. Ver. Limnol. 23: 241–245.

    Google Scholar 

  • Austin, M. P., 1976a. On non-linear species response models in ordination. Vegetatio 33: 33–41.

    Article  Google Scholar 

  • Austin, M. P., 1976b. Performance of four ordination techniques assuming different non-linear species response models. Vegetatio 33: 43–49.

    Article  Google Scholar 

  • Austin, M. P., 1980. Continuum concept, ordination methods and niche theory. Ann. Rev. Ecol. Syst. 16: 39–61.

    Article  Google Scholar 

  • Bendell, B. E. & D. K. McNichol, 1987. Fish predation, lake acidity and the composition of aquatic insect assemblages. Hydrobiologia 150: 193–202.

    Article  Google Scholar 

  • Boecklen, W. J. & D. W. Price, 1989. Size and shape of sawfly assemblages on Arroyo willow. Ecology 70: 1463–1471.

    Article  Google Scholar 

  • Bradt, P. T. & M. B. Berg, 1987. Macrozoobenthos of three Pennsylvania lakes: responses to acidification. Hydrobiologia 150: 63–74.

    Article  CAS  Google Scholar 

  • Bunn, S. E., D. H. Edwards & N. R. Loneragen, 1986. Spatial and temporal variation in the macroinvertebrate fauna of streams of the northern jarrah forest, Western Australia: community structure. Freshwat. Biol. 16: 67–91.

    Article  Google Scholar 

  • Burd, B. J., A. Nemec & R. O. Brinkhurst, 1990. The development and application of analytical methods in benthic marine infaunal studies. Adv. Mar. Biol. 26: 169–247.

    Article  Google Scholar 

  • Cairns, J. Jr. & K. L. Dickson, 1971. A simple method for the biological assessment of the effects of waste discharge on aquatic bottom-dwelling organisms. J. Wat. Pollut. Cont. Fed. 43: 755–772.

    Google Scholar 

  • Cassie, R. M. & A. D. Michael, 1968. Fauna and sediments of an intertidal mud flat: a multivariate analysis. J. exp. mar. Biol. Ecol. 2: 1–13.

    Article  Google Scholar 

  • Clarke, K. R. & R. H. Green, 1988. Statistical design and analysis for a ‘biological effects’ study. Mar. Ecol. Prog. Ser. 46: 213–226.

    Google Scholar 

  • Corkum, L. D. & J. J. H. Ciborowski, 1988. Use of alternative classifications in studying broad-scale distributional patterns of lotic invertebrates. J. North Am. Benthol. Soc. 7: 167–179.

    Article  Google Scholar 

  • Digby, P. G. N. & R. A. Kempton, 1987. Multivariate Analysis of Ecological Communities. Chapman and Hall, New York.

    Google Scholar 

  • Doeg, T. J., R. Marchant, M. Douglas & P. S. Lake, 1989. Experimental colonization of sand, gravel and stones by macroinvertebrates in the Acheron River, southeastern Australia. Freshwat. Biol. 22: 57–64.

    Article  Google Scholar 

  • Downing, J. A., 1979. Aggregation, transformation and the design of benthos sampling programs. J. Fish. Res. Bd Can. 36: 1454–1463.

    Google Scholar 

  • Elliott, J. M., 1977. Some Methods for the Statistical Analysis of Samples of Benthic Invertebrates. 2nd Edition. Scientific Publications of the Freshwater Biological Association, No. 25.

  • Fasham, M. J. R., 1977. A comparison of nonmetric multidimensional scaling, principal components analysis and reciprocal averaging for the ordination of simulated coenoclines and coenoplanes. Ecology 58: 551–561.

    Article  Google Scholar 

  • Furse, M. T., D. Moss, J. F. Wright & P. D. Armitage, 1984. The influences of seasonal and taxonomic factors on the ordination and classification of running-water sites in Great Britain and on the prediction of their macroinvertebrate communities. Freshwat. Biol. 14: 257–280.

    Article  Google Scholar 

  • Glazier, J. C. & J. L. Gooch, 1987. Macroinvertebrate assemblages in Pennsylvania (USA) springs. Hydrobiologia 150: 33–43.

    Article  CAS  Google Scholar 

  • Gower, J. C., 1971. Statistical methods of comparing different multivariate analyses of the same data. In F. R. Hodson, D. G. Kendall & P. Tautu (eds), Mathematics in the Archaeological and Historical Sciences. Edinburgh University Press, Edinburgh. 138–149.

    Google Scholar 

  • Gower, J. C., 1975. Generalized Procrustes analysis. Psychometrika 40: 33–51.

    Article  Google Scholar 

  • Graça, M. A. S., D. M. Fonseca & S. T. Castro, 1989. The distribution of macroinvertebrate communities in two Portugese rivers. Freshwat. Biol. 22: 297–308.

    Article  Google Scholar 

  • Green, R. H., 1979. Sampling Design and Statistical Methods for Environmental Biologists. John Wiley and Sons, New York.

    Google Scholar 

  • Green, R. H., 1980. Multivariate approaches in ecology: The assessment of ecology similarity. Annu. Rev. Ecol. Syst. 5: 1–14.

    Article  Google Scholar 

  • Harvey, H. H. & J. M. McArdle, 1986. Composition of the benthos in relation to pH in the LaCloche lakes. War. Air Soil Pollut. 30: 529–536.

    Article  CAS  Google Scholar 

  • Hruby, T., 1987. Using similarity measures in benthic impact assessments. Envir. Monit. Assess. 8: 163–180.

    Article  Google Scholar 

  • Hughes, R. N. & M. L. H. Thomas, 1971. The classification and ordination of shallow-water benthic samples from Prince Edward Island, Canada. J. exp. mar. Biol. Ecol. 7: 1–39.

    Article  Google Scholar 

  • Jackson, D. A. 1992. Fish and benthic invertebrate communities: analytical approaches and community-environment relationships. Doctoral Dissertation. Department of Zoology, University of Toronto, Toronto, Canada.

    Google Scholar 

  • Jackson, D. A. & K. M. Somers, 1991. Putting things in order: The ups and downs of detrended correspondence analysis. Am. Nat. 137: 704–712.

    Article  Google Scholar 

  • Jackson, D. A., K. M. Somers & H. H. Harvey, 1989. Similarity coefficients: Measures of co-occurrence and association or simply measures of occurrence? Am. Nat. 133: 436–453.

    Article  Google Scholar 

  • Jackson, D. A., K. M. Somers & H. H. Harvey, 1992. Null models and fish communities: evidence of non-random patterns. Am. Nat. 139: 930–951.

    Article  Google Scholar 

  • James, F. J. & C. E. McCulloch, 1990. Data analysis and the design of experiments in ornithology. In R. F. Johnston (ed.), Current Ornithology. Vol. 2. Plenum Press, New York: 1–63.

    Google Scholar 

  • Jenkins, R. A., K. R. Wade & E. Pugh, 1984. Macroinvertebrate habitat relationships in the River Teifi catchment and the significance to conservation. Freshwat. Biol. 14: 23–42.

    Article  Google Scholar 

  • Kenkel, N. C. & L. Orlóci, 1986. Applying metric and non-metric multidimensional scaling to ecological studies: Some new results. Ecology 67: 919–928.

    Article  Google Scholar 

  • King, J. M., 1981. The distribution of invertebrate communities in a small South African river. Hydrobiologia 83: 43–65.

    Article  Google Scholar 

  • King, J. M., J. A. Day, P. R. Hurly, M-P. Henshalal-Howard & B. R. Davies, 1988. Macroinvertebrate communities and environment in a southern African mountain stream. Can. J. Fish. aquat. Sci. 45: 2168–2181.

    Article  Google Scholar 

  • Legendre, L. & P. Legendre, 1983. Numerical Ecology. Elsevier Scientific Publishing, Amsterdam.

    Google Scholar 

  • Leland, H. V., J. L. Carter & S. V. Fend, 1986. Use of detrended correspondence analysis to evaluate factors controlling spatial distribution of benthic insects. In S. Tyler (ed.), Advances in the Biology of Turbellarians and related Platyhelminthes. Developments in Hydrobiology 32. Dr W. Junk Publishers, Dordrecht: 113–123. Reprinted from Hydrobiologia 132.

    Google Scholar 

  • Ludwig, J. A. & J. F. Reynolds, 1988. Statistical Ecology. John Wiley and Sons, New York.

    Google Scholar 

  • Minchin, P. R., 1987. An evaluation of the relative robustness of techniques for ecological ordination. Vegetatio 69: 89–107.

    Article  Google Scholar 

  • Mitchie, M. G., 1982. Use of the Bray-Curtis similarity measure in cluster analysis of Foraminiferal data. Math. Geol. 14: 661–667.

    Article  Google Scholar 

  • Noy-Meir & M. P. Austin, 1970. Principal component ordination and simulated vegetational data. Ecology 51: 551–552.

    Article  Google Scholar 

  • Oksanen, J., 1983. Ordination of boreal heath-like vegetation with principal component analysis, correspondence analysis and multidimensional scaling. Vegetatio 52: 181–189.

    Article  Google Scholar 

  • Oksanen, J., 1988. A note on the occasional instability of detrending in correspondence analysis. Vegetatio 74: 29–32.

    Article  Google Scholar 

  • Orlóci, L., 1978. Multivariate Analysis in Vegetation Research. 2nd edn. Dr W. Junk Publishers, The Hague.

    Google Scholar 

  • Ormerod, S. J., 1988. The micro-distribution of aquatic macroinvertebrates in the Wye river system: the result of abiotic or biotic factors? Freshwat. Biol. 20: 241–247.

    Article  Google Scholar 

  • Ormerod, S. J. & R. W. Edwards, 1987. The ordination and classification of macroinvertebrate assemblages in the catchment of the River Wye in relation to environmental factors. Freshwat. Biol. 17: 533–546.

    Article  Google Scholar 

  • Pielou, E. C., 1984. The Interpretation of Ecological Data. Wiley, New York.

    Google Scholar 

  • Pontasch, K. W. & M. A. Brusven, 1988. Diversity and community comparison indices: Assessing macroinvertebrate recovery following a gasoline spill. Wat. Res. 22: 619–626.

    Article  CAS  Google Scholar 

  • Rabeni, C. F. & K. E. Gibbs, 1980. Ordination of deep river invertebrate communities in relation to environmental variables. Hydrobiologia 74: 67–76.

    Article  Google Scholar 

  • Rohlf, F. J., 1989. NTSYS/PC. Numerical Taxonomy and Multivariate Analysis System. Exeter Publishing, Setauket, New York.

    Google Scholar 

  • Rohlf, F. J., 1990. Morphometrics. Annu. Rev. Ecol. Syst. 21: 299–316.

    Article  Google Scholar 

  • Rutt, G. P., N. S. Weatherley & S. J. Ormerod, 1989. Microhabitat availability in Welsh moorland and forest streams as a determinant of macroinvertebrate distribution. Freshwat. Biol. 22: 247–262.

    Article  Google Scholar 

  • Schonemann, P. H. & R. H. Carroll, 1970. Fitting one matrix to another under choice of a central dilation and a rigid motion. Psychometrika 35: 245–255.

    Article  Google Scholar 

  • Sheldon, A. L. & R. A. Haick, 1981. Habitat selection and association of stream insects: a multivariate analysis. Freshwat. Biol. 11: 395–403.

    Article  Google Scholar 

  • Smith, R. E. & R. G. Pearson, 1987. The macro-invertebrate communities of temporary pools in an intermittent stream in tropical Queensland. Hydrobiologia 150: 45–61.

    Article  Google Scholar 

  • Smith, R. W., B. R. Bernstein & R. L. Cimberg, 1988. Community environment relationships in the benthos: Applications of multivariate analytical techniques. In D. F. Soule and G. S. Kleppel (eds), Marine Organisms as Indicators. Springer-Verlag, New York: 247–326.

    Google Scholar 

  • Smith, E. P., K. W. Pontasch & J. Cairns Jr., 1990. Community similarity and the analysis of multispecies environmental data: A unified statistical approach. Wat. Res. 24: 507–514.

    Article  CAS  Google Scholar 

  • Stephenson, W. & W. T. Williams, 1971. A study of the benthos of soft bottoms, Sek Harbour, New Guinea, using numerical analysis. Aust. J. mar. Freshwat. Res. 22: 11–34.

    Article  Google Scholar 

  • Stull, J. K., C. I. Haydick, R. W. Smith & D. W. Montagne, 1986. Long-term changes in the benthic community on the coastal shelf of Palos Verdes, southern California. Mar. Biol. 91: 539–551.

    Article  Google Scholar 

  • Swan, J. M. A., 1970. An examination of some ordination problems by use of simulated vegetational data. Ecology 51: 89–102.

    Article  Google Scholar 

  • ter Braak, C. F. J., 1987. CANOCO — a FORTRAN program for canonical community ordination by [partial] [detrended] [canonical] correspondence analysis, principal components analysis and redundancy analysis. ITI-INO, Wageningen.

    Google Scholar 

  • Townsend, C. R., A. G. Hildrew & K. Schofield, 1987. Persistence of stream invertebrate communities in relation to environmental stability. J. anim. Ecol. 56: 597–613.

    Article  Google Scholar 

  • Warwick, R. M., 1988. Analysis of community attributes of the macrobenthos of Frierfjord/Landesundfjord at taxonomic levels higher than species. Mar. Ecol. Prog. Ser. 46: 167–170.

    Google Scholar 

  • Wright, J. F., D. Ross, P. D. Armitage & M. T. Furse, 1984. A preliminary classification of running-water sites in Great Britain based on macro-invertebrate species and the predication of community type using environmental data. Freshwat. Biol. 14: 221–256.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jackson, D.A. Multivariate analysis of benthic invertebrate communities: the implication of choosing particular data standardizations, measures of association, and ordination methods. Hydrobiologia 268, 9–26 (1993). https://doi.org/10.1007/BF00005737

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00005737

Key words

Navigation