Skip to main content
Log in

A Simple Method for Quantifying Compositional Correspondence Between Zooarchaeological Assemblages Using Paired Similarity Indices

  • Published:
Journal of Archaeological Method and Theory Aims and scope Submit manuscript

Abstract

Archaeologists employ an array of comparative approaches to assess zooarchaeological assemblages and the human behavior that produced them. Similarity indices are a simple and effective method for evaluating correspondence between the taxa present and their abundances in two zooarchaeological assemblages. Yet, these indices are not as widely used as other approaches. Here, I review several similarity metrics and present a method for measuring assemblage similarity using paired incidence- and abundance-based indices. The combined results of these measures can be used to classify a set of assemblages according to their dissimilarity, qualitative similarity, quantitative similarity, or substantive similarity. The paired-index approach is demonstrated employing the corrected Forbes and Morista-Horn indices in two zooarchaeological case studies from the Caribbean sites of Sabazan (Carriacou), Sandy Ground (Anguilla), and Crève Coeur (Martinique) in the Lesser Antilles. I show that the method (1) provides a means to quantify the similarity between assemblages along a defined, meaningful scale; (2) offers a straightforward approach for understanding how the dimensions of assemblage similarity interact based on a proposed classification scheme; and (3) constitutes a simple-to-apply technique requiring minimal technical skills. I conclude by discussing the strengths and limitations of this method and its potential wider application in archaeology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. Parrotfish were once classified as a separate family, Scaridae, but are now placed in the tribe Scarinae within the family Labridae. The taxonomic distinction between Labridae and Scaridae is maintained here for consistency with previously published reports and because the skeletal remains of parrotfish are highly distinctive and can be readily separated from those of other labrids.

References

  • Alroy, J. (2015a). A new twist on a very old binary similarity coefficient. Ecology, 96(2), 575–586.

    Article  Google Scholar 

  • Alroy, J. (2015b). A simple way to improve multivariate analyses of paleoecological data sets. Paleobiology, 41(3), 377–386.

    Article  Google Scholar 

  • Anderson, M. J., Crist, T. O., Chase, J. M., Vellend, M., Inouye, B. D., Freestone, A. L., Sanders, N. J., Cornell, H. V., Comita, L. S., Davies, K. F., Harrison, S. P., Kraft, N. J. B., Stegen, J. C., & Swenson, N. G. (2011). Navigating the multiple meanings of β diversity: a roadmap for the practicing ecologist. Ecol Lett, 14(1), 19–28.

    Article  Google Scholar 

  • Barceló, J. A., Del Castillo, F., Mameli, L., Miguel, F. J., & Vilà, X. (2019). From culture difference to a measure of ethnogenesis: the limits of archaeological inquiry. In M. Saqalli & M. Vander Linden (Eds.), Integrating Qualitative and Social Science Factors in Archaeological Modelling (pp. 55–89). Cham: Springer.

    Chapter  Google Scholar 

  • Bar-Oz, G., & Dayan, T. (2003). Testing the use of multivariate inter-site taphonomic comparisons: the faunal analysis of Hefzibah in its Epipalaeolithic cultural context. J Archaeol Sci, 30(7), 885–900.

    Article  Google Scholar 

  • Barwell, L. J., Isaac, N. J., & Kunin, W. E. (2015). Measuring β-diversity with species abundance data. J Anim Ecol, 84(4), 1112–1122.

    Article  Google Scholar 

  • Belmaker, M. (2017). The southern Levant during the last glacial and zooarchaeological evidence for the effects of climate-forcing on hominin population dynamics. In G. Monks (Ed.), Climate Change and Human Responses (pp. 7–25). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Bochaton, C., Ephrem, B., Bérard, B., Cochard, D., Gala, M., Richter, K. K., et al. (2021). The pre-Columbian site of Roseau (Guadeloupe, FWI): Intra-site chronological variability of the subsistence strategies in a Late Ceramic archeological vertebrate assemblage. Archaeol Anthropol Sci, 13(1), 1–17.

    Article  Google Scholar 

  • Borroto-Páez, R., & Woods, C. A. (2012). Status and impact of introduced mammals in the West Indies. In R. Borroto-Páez, C. A. Woods, F. E. & Sergile (Eds.),Terrestrial mammals of the West Indies: Contributions (pp. 241-257). Gainesville: Florida Museum of Natural History and Wachoota Press.

    Google Scholar 

  • Bray, J. R., & Curtis, J. T. (1957). An ordination of the upland forest communities of southern Wisconsin. Ecol Monogr, 27(4), 325–349.

    Article  Google Scholar 

  • Cannon, M. D. (2001). Archaeofaunal relative abundance, sample size, and statistical methods. J Archaeol Sci, 28(2), 185–195.

    Article  Google Scholar 

  • Carder, N., & Crock, J. G. (2012). A pre-Columbian fisheries baseline from the Caribbean. J Archaeol Sci, 39(10), 3115–3124.

    Article  Google Scholar 

  • Carder, N., Reitz, E. J., & Crock, J. G. (2007). Fish communities and populations during the post-Saladoid period (AD 600/800–1500), Anguilla, Lesser Antilles. J Archaeol Sci, 34(4), 588–599.

    Article  Google Scholar 

  • Carr, C., & Case, D. T. (2005). The nature of leadership in Ohio Hopewellian societies. In C. Carr & D. T. Case (Eds.), Gathering Hopewell: Society, ritual and ritual interaction (pp. 177–237). Boston: Springer.

    Chapter  Google Scholar 

  • Chao, A., Chazdon, R. L., Colwell, R. K., & Shen, T. J. (2005). A new statistical approach for assessing similarity of species composition with incidence and abundance data. Ecol Lett, 8(2), 148–159.

    Article  Google Scholar 

  • Chao, A., Chazdon, R. L., Colwell, R. K., & Shen, T. J. (2006). Abundance-based similarity indices and their estimation when there are unseen species in samples. Biometrics, 62(2), 361–371.

    Article  Google Scholar 

  • Clarke, K. R., & Warwick, R. M. (2001). Change in marine communities. An approach to statistical analysis and interpretation (2nd ed.). Plymouth: PRIMER-E Ltd..

    Google Scholar 

  • Conolly, J., Colledge, S., Dobney, K., Vigne, J. D., Peters, J., Stopp, B., Manning, K., & Shennan, S. (2011). Meta-analysis of zooarchaeological data from SW Asia and SE Europe provides insight into the origins and spread of animal husbandry. J Archaeol Sci, 38(3), 538–545.

    Article  Google Scholar 

  • Dice, L. R. (1945). Measures of the amount of ecological association between species. Ecology, 26(3), 297–302.

    Article  Google Scholar 

  • Faith, J. T., & Lyman, R. L. (2019). Paleozoology and paleoenvironments: Fundamentals, assumptions, techniques. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Faith, D. P., Minchin, P. R., & Belbin, L. (1987). Compositional dissimilarity as a robust measure of ecological distance. Vegetatio, 69(1-3), 57–68.

    Article  Google Scholar 

  • Fitzpatrick, S. M., & Giovas, C. M. (2011). New radiocarbon dates for the Grenadine islands (west Indies). Radiocarbon, 53(3), 451–460.

    Article  Google Scholar 

  • Forbes, S. A. (1907). On the local distribution of certain Illinois fishes: an essay in statistical ecology. Bull Illinois State Lab Natural History, 7, 272–303.

    Google Scholar 

  • Froese, R. & D. Pauly. Editors. (2019). FishBase. World Wide Web electronic publication. www.fishbase.org, version (12/2019). Accessed 1 December 2020.

  • Giovas, C. M. (2013). Foraging variability in the prehistoric Caribbean: Multiple foraging optima, resource use, and anthropogenic impacts on Carriacou, Grenada (Doctoral dissertation, University of Washington, Seattle, USA).

  • Giovas, C. M. (2016). Though she be but little: Resource resilience, Amerindian foraging, and long-term adaptive strategies in the Grenadines, West Indies. J Island Coast Archaeol, 11(2), 238–263.

    Article  Google Scholar 

  • Giovas, C. M. (2018a). Impact of analytic protocols on archaeofish abundance, richness, and similarity: a Caribbean-Pacific crossover study. In C. M. Giovas & M. J. LeFebvre (Eds.), Zooarchaeology in practice: case studies in methodology and interpretation in archaeofaunal analysis (pp. 59–89). Cham: Springer.

    Chapter  Google Scholar 

  • Giovas, C. M. (2018b). Pre-Columbian Amerindian lifeways at the Sabazan site, Carriacou, West Indies. J Island Coast Archaeol, 13, 157–186.

    Article  Google Scholar 

  • Giovas, C. M., Lambrides, A. B., Fitzpatrick, S. M., & Kataoka, O. (2017). Reconstructing prehistoric fishing zones in Palau, Micronesia using fish remains: a blind test of inter-analyst correspondence. Archaeol Ocean, 52(1), 45–61.

    Article  Google Scholar 

  • Gordon, E. A. (1993). Screen size and differential faunal recovery: a Hawaiian example. J Field Archaeol, 20(4), 453–460.

    Google Scholar 

  • Grayson, D. K. (1984). Quantitative zooarchaeology: topics in the analysis of archaeological faunas. New York: Academic Press.

    Google Scholar 

  • Grayson, D. K. (1991). Alpine faunas from the White Mountains, California: adaptive change in the Late Prehistoric Great Basin? J Archaeol Sci, 18(4), 483–506.

    Article  Google Scholar 

  • Grayson, D. K., & Delpech, F. (2002). Specialized early Upper Palaeolithic hunters in southwestern France? J Archaeol Sci, 29(12), 1439–1449.

    Article  Google Scholar 

  • Grouard, S. (2001). Faunal remains associated with Late Saladoïd and Post- Saladoïd occupations at Anse à la Gourde, Guadeloupe, West Indies: Preliminary results. Archaeofauna, 10, 71–98.

    Google Scholar 

  • Grouard, S., Perdikaris, S., Espindola Rodrigues, N. E., & Quitmyer, I. R. (2019). Size estimation of pre-Columbian Caribbean fish. Int J Osteoarchaeol, 29(3), 452–468.

    Article  Google Scholar 

  • Hoggarth, D. (2001). Management Plan for the Marine Parks of Anguilla. Organisation of Eastern Caribbean States Natural Resources Management Unit, St. Lucia. Retrieved February 4, 2021, from https://parkscaribbean.net/wp-content/uploads/2013/11/Anguilla/20Marine/20Parks/20Management/20Plan/20(2001).pdf

  • Horn, H. S. (1966). Measurement of “overlap” in comparative ecological studies. Am Nat, 100(914), 419–424.

    Article  Google Scholar 

  • Jaccard, P. (1900). Contribution au problème de l’immigration post-glaciaire de la flore alpine. Bulletin de la Société Vaudoise des Sciences Naturelles, 36, 87–130.

    Google Scholar 

  • Janson, S., & Vegelius, J. (1981). Measures of ecological association. Oecologia, 49(3), 371–376.

    Article  Google Scholar 

  • Jones, E. L. (2016). In search of the broad spectrum revolution in Paleolithic southwest Europe. Cham: Springer.

    Book  Google Scholar 

  • Jones, E. L. (2018). Coming to terms with imperfection: comparative studies and the search for grazing impacts in seventeenth century New Mexico. In C. M. Giovas & M. J. LeFebvre (Eds.), Zooarchaeology in practice: Case studies in methodology and interpretation in archaeofaunal analysis (pp. 251–268). Cham: Springer.

    Chapter  Google Scholar 

  • Jost, L., Chao, A., & Chazdon, R. L. (2011). Compositional similarity and β (beta) diversity. In A. E. Magurran & B. J. McGill (Eds.), Biological diversity: frontiers in measurement and assessment (pp. 66–84). Oxford: Oxford University Press.

    Google Scholar 

  • Kirch, P., & O'Day, S. J. (2003). New archaeological insights into food and status: a case study from pre-contact Hawaii. World Archaeol, 34(3), 484–497.

    Article  Google Scholar 

  • Krebs, C. J. (2014, in prep). Ecological methodology, 3rd ed. https://www.zoology.ubc.ca/~krebs/books.html. Accessed 27 November 2020.

  • Lennon, J. J., Koleff, P., Greenwood, J. J. D., & Gaston, K. J. (2001). The geographical structure of British bird distributions: diversity, spatial turnover and scale. J Anim Ecol, 70(6), 966–979.

    Article  Google Scholar 

  • Lyman, R. L. (2008). Quantitative paleozoology. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Lyman, R. L. (2014). Terminal Pleistocene change in mammal communities in southeastern Washington State, USA. Quat Res, 81(2), 295–304.

    Article  Google Scholar 

  • Magurran, A. (1988). Ecological diversity and its measurement. Princeton: Princeton University Press.

    Book  Google Scholar 

  • Magurran, A. (2004). Measuring biological diversity. Malden: Blackwell Science Ltd..

    Google Scholar 

  • McKechnie, I., & Moss, M. L. (2016). Meta-analysis in zooarchaeology expands perspectives on Indigenous fisheries of the Northwest Coast of North America. J Archaeol Sci Rep, 8, 470–485.

    Google Scholar 

  • McKechnie, I., Lepofsky, D., Moss, M. L., Butler, V. L., Orchard, T. J., Coupland, G., Foster, F., Caldwell, M., & Lertzman, K. (2014). Archaeological data provide alternative hypotheses on Pacific herring (Clupea pallasii) distribution, abundance, and variability. Proc Natl Acad Sci, 111(9), E807–E816.

    Article  Google Scholar 

  • Morisita, M. (1962). Iσ-Index, a measure of dispersion of individuals. Res Popul Ecol, 4(1), 1–7.

    Article  Google Scholar 

  • Nagaoka, L. (1994). Differential recovery of Pacific island fish remains: evidence from the Moturakau Rockshelter, Aitutaki, Cook Islands. Asian Perspect, 33(1), 1–17.

    Google Scholar 

  • Newsom, L. A., & Wing, E. S. (2004). On land and sea: native American uses of biological resources in the West Indies. Tuscaloosa: University of Alabama Press.

    Google Scholar 

  • Nims, R., & Butler, V. L. (2019). Increasing the robustness of meta-analysis through life history and middle-range models: an example from the Northeast Pacific. J Archaeol Method Theory, 26(2), 581–618.

    Article  Google Scholar 

  • Orton, D. C., Morris, J., Locker, A., & Barrett, J. H. (2014). Fish for the city: meta-analysis of archaeological cod remains and the growth of London’s northern trade. Antiquity, 88(340), 516–530.

    Article  Google Scholar 

  • Patterson, D. B., Faith, J. T., Bobe, R., & Wood, B. (2014). Regional diversity patterns in African bovids, hyaenids, and felids during the past 3 million years: the role of taphonomic bias and implications for the evolution of Paranthropus. Quat Sci Rev, 96, 9–22.

    Article  Google Scholar 

  • Reitz, E. J., & Wing, E. S. (2008). Zooarchaeology (2nd ed.). Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Renkonen, O. (1938). Statistisch-ökologische Untersuchungen über die terrestrische Käferwelt der finnischen Bruchmoore. Annale Zoologici Societatis Zoologicae-Botanicae Fennicae Vanamo, 6, 1–231.

    Google Scholar 

  • Rick, J. W. (1996). Projectile points, style, and social process in the Preceramic of Central Peru. In G. H. Odell (Ed.), Stone tools. Theoretical insights into human prehistory (pp. 245–278). New York: Plenum Press.

    Google Scholar 

  • Simpson, G. G. (1943). Mammals and the nature of continents. Am J Sci, 241(1), 1–31.

    Article  Google Scholar 

  • Smith, B. (1986). Evaluation of different similarity indices applied to data from the Rothamsted insect survey (MSc thesis, University of York, York, UK).

  • Sørensen, T. A. (1948). A method of establishing groups of equal amplitude in plant sociology based on similarity of species content, and its application to analysis of the vegetation on Danish commons. Biologiske Skrifter Kongelige Danske Videnskabernes Selskab, 5, 1–34.

    Google Scholar 

  • Todeschini, R., Consonni, V., Xiang, H., Holliday, J., Buscema, M., & Willett, P. (2012). Similarity coefficients for binary chemoinformatics data: overview and extended comparison using simulated and real data sets. J Chem Inf Model, 52(11), 2884–2901.

    Article  Google Scholar 

  • Wallman, D. (2018). Histories and trajectories of socio-ecological landscapes in the Lesser Antilles: implications of colonial period zooarchaeological research. Environ Archaeol, 23(1), 13–22.

    Article  Google Scholar 

  • Wallman, D., & Grouard, S. (2017). Enslaved laborer and sharecropper fishing practices in 18th-19th century Martinique: a zooarchaeological and ethnozoohistorical study. J Ethnobiol, 37(3), 398–420.

    Article  Google Scholar 

  • Walsh, M. J. (2015). A zooarchaeological study of generational decision-making: modeling subsistence and demographic change in Late-Holocene occupations of housepit 54 at the Bridge River Site (Eerl4), Mid-Fraser, BC. (PhD dissertation, University of Montana, Missoula, USA).

  • Whitaker, A. R., & Byrd, B. F. (2012). Boat-based foraging and discontinuous prehistoric red abalone exploitation along the California coast. J Archaeol Sci, 31, 196–214.

    Google Scholar 

  • Whittaker, R. H. (1972). Evolution and measurement of species diversity. Taxon, 21(2-3), 213–251.

    Article  Google Scholar 

  • Wing, E. S., & Wing, S. R. (2001). Prehistoric fisheries in the Caribbean. Coral Reefs, 20(1), 1–8.

    Article  Google Scholar 

  • Wolda, H. (1981). Similarity indices, sample size and diversity. Oecologia, 50(3), 296–302.

    Article  Google Scholar 

Download references

Acknowledgements

I thank Lee Lyman, Tyler Faith, and two anonymous reviewers for their valuable suggestions on an earlier version of this manuscript. I am grateful to Diane Wallman for sharing information about the Crève Cœur zooarchaeological assemblage.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christina M. Giovas.

Ethics declarations

Conflict of Interest

The author declares no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Online Resource 1.

Supplemental Table: Five scenarios from the hypothetical assemblages in Table 1, presented with taxon abundances based on the number of identified specimens (NISP), and Simpson, corrected Forbes, and Morisita-Horn index statistics. (PDF 221 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Giovas, C.M. A Simple Method for Quantifying Compositional Correspondence Between Zooarchaeological Assemblages Using Paired Similarity Indices. J Archaeol Method Theory 28, 823–844 (2021). https://doi.org/10.1007/s10816-021-09512-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10816-021-09512-y

Keywords

Navigation