Skip to main content
Log in

Unique adaptations of the metabolic biochemistry of tunas and billfishes for life in the pelagic environment

  • Published:
Environmental Biology of Fishes Aims and scope Submit manuscript

Synopsis

Virtually all characteristics of tunas and billfishes reflect their highly charged lifestyles as apex predators in the oceanic pelagic environment. The adaptations they possess for efficient and rapid swimming, efficient and rapid food processing, turnover of nutrients and storage and mobilization of internal fuel supplies, and for rapid recovery rates, are discussed. Overall, tunas and billfishes are designed for high performance, at both sustainable and burst swimming speeds, but there are several differences between tunas and billfishes. Tunas' aerobic metabolic capacities exceed those of ectothermic fishes, including billfishes and other scombrids, by virtue of their elevated red muscle temperatures, and because heart and white muscle aerobic capacities are significantly greater in tunas. The adaptations for high performance involve some costs, including the need for a constant high energy input to sustain high metabolic rates, high activity levels, and endothermy, Yet, tunas and billfishes have adopted successful lifestyles, as evidenced by their large numbers and biomass within the marine environment. Although our knowledge of these fishes has increased dramatically during the past 15 years, there are major gaps in our understanding of the metabolic biochemistry and physiology of these fishes, and these are highlighted so that additional research can be directed towards filling these gaps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References cited

  • Abe, H. 1981. Determination of L-histidine-related compounds in fish muscles using high-performance liquid chromatography. Bull. Jap. Soc. Scient. Fish. 47: 139.

    Google Scholar 

  • Abe, H. 1983. Distribution of free L-histidine and its related compounds in marine fishes. Bull. Jap. Soc. Scient. Fish. 49: 1683–1687.

    Google Scholar 

  • Abe, H., R.W. Brill & P.W. Hochachka. 1986. Metabolism of Lhistidine, carnosine, and anserine in skipjack tuna. Physiol. Zool. 59: 439–450.

    Google Scholar 

  • Abe, H., G.P. Dobson, U. Hoeger & W.S. Parkhouse. 1985. Role of histidine-related compounds to intracellular buffering in fish skeletal muscle. Amer. J. Physiol. 249: R449–R454.

    Google Scholar 

  • Alexander, N., R.M. Laurs, A. McIntosh & S.W. Russell. 1980. Haematological characteristics of albacore, Thunnus alalunga (Bonnaterre), and skipjack, Katsuwonus pelamis (Linnaeus). J. Fish. Bol. 16: 383–395.

    Google Scholar 

  • Alexander, R.M. 1969. The orientation of muscle fibres in the myomeres of fishes. J. Mar. Biol. Assoc. U.K. 49: 263–290.

    Google Scholar 

  • Altringham, J.D. & I.A. Johnston. 1985. The effects of temperature on ATPase activity and force generation in skinned muscle fibers from the Pacific blue marlin (Makaira nigricans). Experientia 41: 1532–1533.

    Google Scholar 

  • Altringham, J.D. & I.A. Johnston. 1986. Evolutionary adaptation to temperature in fish muscle cross bridge mechanisms: tension and ATP turnover. J. Comp. Physiol. B 156: 819–821.

    Google Scholar 

  • Ameyaw-Akumfi, C. 1975. The functional morphology of the body and tail muscles of the tuna Katsuwonus pelamis Linnaeus. Zool. Anz. 194: 367–375.

    Google Scholar 

  • Arthur, P.G., T.G. West, R.W. Brill, P.M. Schulte & P.W. Hochachka. 1992. Recovery metabolism of skipjack tuna (Katsuwonus pelamis) white muscle: rapid and parallel changes of lactate and phosphocreatine after exercise. Can. J. Zool. 70: 1230–1239.

    Google Scholar 

  • Barrett, I. & A.A. Williams. 1065. Hemoglobin content of the blood of fifteen species of marine fishes. Calif. Fish Game Fish Bull. 51: 216–218.

    Google Scholar 

  • Basile, C., G. Goldspink, M. Modigh & B. Tota. 1976. Morphological and biochemical characterisation of the inner and outer ventricular myocardial layers of adult tuna fish (Thunnus thynnus L.). Comp. Biochem. Physiol. 54B: 279–283.

    Google Scholar 

  • Bass, A., B. Ostadal, V. Pelouch & V. Vitek. 1973. Differences in weight parameters, myosin-ATPase activity and the enzyme pattern of energy supplying metabolism between the compact and spongious cardiac musculature of carp (Cyprinus carpio) and turtle (Testudo horsfieldi). Pflugers Arch. 343: 65–77.

    Google Scholar 

  • Beamish, F.W.H. 1978. Swimming capacity. pp. 101–187. In: W.S. Hoar & D.J. Randall (ed.) Fish Physiology, Vol. 7, Academic Press, New York.

    Google Scholar 

  • Black, E.C., A.R. Connor, K.C. Lam & W.G. Chiu. 1962. Changes in glycogen, pyruvate, and lactate in rainbow trout (Salmo gairdneri) during and following muscular activity. J. Fish. Res. Board Can. 19: 409–436.

    Google Scholar 

  • Block, B.A. 1991a. Evolutionary novelties: how fish have built a heater out of muscle. Amer. Zool. 31: 726–742.

    Google Scholar 

  • Block, B.A. 1991b. Endothermy in fish: thermogenesis, ecology, and evolution. pp. 269–311. In: P.W. Hochachka & T.P. Mommsen (ed.) Biochemistry and Molecular Biology of Fishes, Vol. 1, Elsevier, New York.

  • Block, B.A., D. Booth & F.G. Carey. 1992. Direct measurement of swimming speeds and depth of blue marlin. J. Exp. Biol. 166: 267–284.

    Google Scholar 

  • Block, B.A. & J.R. Finnerty. 1994. Endothermy in fishes: a phylogenetic analysis of constraints, predispositions and selection pressures. Env. Biol. Fish 40: 283–302.

    Google Scholar 

  • Bone, Q. 1978. Myotomal muscle fiber types in Scomber and Katsuwonus. pp. 183–205. In: G.D. Sharp & A.E. Dizon (ed.) The Physiological Ecology of Tunas, Academic Press, New York.

    Google Scholar 

  • Breisch, E.A., F. White, H.M. Jones & R.M. Laurs. 1983. Ultrastructural morphometry of the myocardium of Thunnus alalunga. Cell Tiss. Res. 233: 427–438.

    Google Scholar 

  • Brill, R.W. 1987. On the standard metabolic rates of tropical tunas, including the effect of body size and acute temperature change. U.S. Fish. Bull. 85: 25–35.

    Google Scholar 

  • Brill, R.W. & P.G. Bushnell. 1991. Metabolic and cardiac scope of high energy demand teleosts, the tunas. Can. J. Zool. 69: 2002–2009.

    Google Scholar 

  • Brill, R.W. & A.E. Dizon. 1979. Red and white muscle fiber activity in swimming skipjack tuna, Katsuwonus pelamis (Linnaeus). J. Fish Biol. 6: 665–670.

    Google Scholar 

  • Buck, L.T., R.W. Brill & P.W. Hochachka. 1992. Gluconeogenesis in hepatocytes isolated from the skipjack tuna Katsuwonus pelamis. Can. J. Zool. 70: 1254–1257.

    Google Scholar 

  • Buddington, R.K. & J.M. Diamond. 1987. Pyloric ceca of fish: a ‘new’ digestive organ. Amer. J. Physiol. 252: G65–G76.

    Google Scholar 

  • Bushnell, P.G., R.W. Brill & R.E. Bourke. 1990. Cardiorespiratory responses of skipjack tuna (Katsuwonus pelamis), yellowfin tuna (Thunnus albacares), and bigeye tuna (Thunnus obesus) to acute reductions of ambient oxygen. Can. J. Zool. 68: 1857–1865.

    Google Scholar 

  • Butler, P.J. & J.F. Metcalfe. 1983. Control of respiration and circulation. pp. 41–65. In: J.C. Rankin, T.J. Pitche & R.T. Duggan (ed.) Control Processes in Fish Physiology, John Wiley & Sons, New York.

    Google Scholar 

  • Carey, F.G., J.W. Kanwisher & E.D. Stevens. 1984. Bluefin tuna warm their viscera during digestion. J. Exp. Biol. 109: 1–20.

    Google Scholar 

  • Carey, F.G. & K.D. Lawson. 1973. Temperature regulation in free-swimming bluefin tuna. Comp. Biochem. Physiol. 44A: 375–392.

    Google Scholar 

  • Castellini, M.A. & G.N. Somero. 1981. Buffering capacity of vertebrate muscle: correlations with potentials for anaerobic function. J. Comp. Physiol. 143: 191–198.

    Google Scholar 

  • Childress, J.J. & G.N. Somero. 1979. Depth-related enzymatic activities in muscle, brain and heart of deep-living pelagic marine teleosts. Mar. Biol. 52: 273–283.

    Google Scholar 

  • Cole, R.P. 1982. Myoglobin function in exercising skeletal muscle. Science 216: 523–525.

    Google Scholar 

  • Collette, B.B. & C.E. Nauen. 1983. Scombrids of the world. FAO Species Catalog, Vol. 2. 137 pp.

  • Crabtree, B. & E.A. Newsholme. 1972. The activities of phosphorylase, hexokinase, phosphofructokinase, lactate dehydrogenase in muscles from vertebrates and invertebrates. Biochem. J. 126: 49–58.

    Google Scholar 

  • Davie, P.S. & C. Daxboeck. 1984. Anatomy and adrenergic pharmacology of the coronary vascular bed of Pacific blue marlin (Makaira nigricans). Can. J. Zool. 62: 1886–1888.

    Google Scholar 

  • Daxboeck, C. & P.S. Davie. 1986. Physiological investigations of marlin. pp. 50–70. In: S. Nilsson & S. Holmgren (ed.) Fish Physiology: Recent Advances, Croom Helm, London.

    Google Scholar 

  • Dickson, K.A. 1988. Why are some fishes endothermic? Interspecific comparisons of aerobic and anaerobic metabolic capacities in endothermic and ectothermic scombrids. Ph.D. Dissertation, University of California, San Diego. 358 pp.

  • Dickson, K.A., A.V. Dall, J.M. Eisman, E.T. McDonnell & A.M. Hendrzak. 1988. Biochemical indices of aerobic and anaerobic capacity in red and white myotomal muscle of active, pelagic sharks: comparisons between endothermic and ectothermic species. J. Penn. Acad. Sci. 62: 147–151.

    Google Scholar 

  • Dickson, K.A., M.O. Gregorio, S.J. Gruber, K.L. Loefler, M. Tran & C. Terrell. 1993. Biochemical indices of aerobic and anaerobic capacity in muscle tissues of California elasmobranch fishes differing in typical activity level. Mar. Biol. 117: 185–193.

    Google Scholar 

  • Dickson, K.A. & G.N. Somero. 1987. Partial characterization of the buffering components of the red and white myotomal muscle of marine teleosts, with special emphasis on scombrid fishes. Physiol. Zool. 60: 699–706.

    Google Scholar 

  • Dizon, A.E. 1977. Effect of dissolved oxygen concentration and salinity on swimming speed of two species of tunas. U.S. Fish. Bull. 75: 649–653.

    Google Scholar 

  • Dobson, G.P., S.C. Wood, C. Daxboeck & S.E. Perry. 1986. Intracellular buffering and oxygen transport in the Pacific blue marlin (Makaira nigricans): adaptations to high-speed swimming. Physiol. Zool. 59: 150–156.

    Google Scholar 

  • Dotson, R.C. 1978. Fat deposition and utilization in albacore. pp. 343–355. In: G.D. Sharp & A.E. Dizon (ed.) The Physiological Ecology of Tunas, Academic Press, New York.

    Google Scholar 

  • Driedzic, W.R. 1983. The fish heart as a model system for the study of myoglobin. Comp. Biochem. Physiol. A 76: 487–493.

    Google Scholar 

  • Driedzic, W.R., B.D. Siddel, D. Stowe & R. Branscombe. 1987. Matching of vertebrate cardiac energy demand to energy metabolism. Amer. J. Physiol. 252: R930–R937.

    Google Scholar 

  • Everse, J. & N.O. Kaplan. 1973. LDH: Structure and function. Adv. Enzymol. 37: 71–133.

    Google Scholar 

  • Ewart, H.S. & W.R. Driedzic. 1987. Enzymes of energy metabolism in salmonid hearts: spongy versus cortical myocardia. Can. J. Zool. 65: 623–627.

    Google Scholar 

  • Farrell, A.P. 1991. From hagfish to tuna: a perspective on cardiac function in fish. Physiol. Zool. 64: 1137–1164.

    Google Scholar 

  • Fierstine, H.L. & V. Walters. 1968. Studies in locomotion and anatomy of scombroid fishes. Memoirs So. Calif. Acad. Sci. 6: 1–31.

    Google Scholar 

  • Gemelli, L., G. Martino & B. Tota. 1980. Oxidation of lactate in the compact and spongy myocardium of tuna fish (Thunnus thynnus thynnus L.). Comp. Biochem. Physiol. 65B: 321–326.

    Google Scholar 

  • George, J.C. & E.D. Stevens. 1978. Fine structure and metabolic adaptation of red and white muscles in tuna. Env. Biol. Fish. 3: 185–191.

    Google Scholar 

  • Gibbs, A. & G.N. Somero. 1990. Na+-K+-adenosine triphosphatase activities in gills of marine teleost fishes: changes with depth, size and locomotory activity level. Mar. Biol. 106: 315–321.

    Google Scholar 

  • Giovane, A., G. Greco, A. Maresca & B. Tota. 1980. Myoglobin in the heart ventricle of tuna and other fishes. Experientia 36: 219–220.

    Google Scholar 

  • Gooch, J.A., M.B. Hale, T. Brown, Jr., J.C. Bonnet, C.G. Brand & L.W. Reiger. 1987. Proximate and fatty acid composition of 40 southeastern U.S. finfish species. NOAA Tech. Report NMFS 54. 23 pp.

  • Gooding, R.M., W.H. Neill & A.E. Dizon. 1981. Respiration rates and low-oxygen tolerance limits in skipjack tuna, Katsuwonus pelamis. U.S Fish. Bull. 79: 31–48.

    Google Scholar 

  • Graham, J.B. 1983. Heat transfer. pp. 248–279. In: P.W. Webb & D. Weihs (ed.) Fish Biomechanics, Praeger Publishers, New York.

    Google Scholar 

  • Graham, J.B., H. Dewar, N.C. Lai, W.R. Lowell & S.M. Arce. 1990. Aspects of shark swimming performance determined using a large water tunnel. J. Exp. Biol. 151: 175–192.

    Google Scholar 

  • Graham, J.B., F.J. Koehin & K.A. Dickson. 1983. Distribution and relative proportions of red muscle in scombrid fishes: consequences of body size and relationships to endothermy. Can. J. Zool. 61: 2087–2096.

    Google Scholar 

  • Graham, J.B., W.R. Lowell, N.C. Lai & R.M. Laurs. 1989. O2 tension, swimming-velocity, and thermal effects on the metabolic rate of the Pacific albacore Thunnus alalunga. Exp. Biol. 48: 89–94.

    Google Scholar 

  • Guppy, M. & P.W. Hochachka. 1978. Controlling the highest lactate dehydrogenase activity known in nature. Amer. J. Physiol. 234: R136–R140.

    Google Scholar 

  • Guppy, M., W.C. Hulbert & P.W. Hochachka. 1979. Metabolic sources of heat and power in tuna muscles. II. Enzymes and metabolite profiles. J. Exp. Biol. 82: 303–320.

    Google Scholar 

  • Hebrank, J.H., M.R. Hebrank, J.H. Long, B.A. Block & S.A. Wainwright. 1990. Backbone mechanics of the blue marlin Makaira nigricans (Pisces, Istiophoridae). J. Exp. Biol. 148: 449–459.

    Google Scholar 

  • Hochachka, P.W., W.C. Hulbert & M. Guppy. 1978. The tuna power plant and furnace. pp. 153–174. In: G.D. Sharp & A.E. Dizon (ed.) The Physiological Ecology of Tunas, Academic Press, New York.

    Google Scholar 

  • Hochachka, P.W. & T.P. Mommsen. 1983. Protons and anaerobiosis. Science 219: 1391–1397.

    Google Scholar 

  • Hughes, G.M. 1984. General anatomy of the gills. pp. 1–72. In: W.S. Hoar & D.J. Randall (ed.) Fish Physiology, Vol. 10, Academic Press, New York.

  • Hulbert, W.C., M. Guppy & P.W. Hochachka. 1979. Metabolic sources of heat and power in tuna muscles. I. Muscle fine structure. J. Exp. Biol. 82: 289–302.

    Google Scholar 

  • Ince, B.W. 1983. Pancreatic control of metabolism. pp. 89–102. In: J.C. Rankin, T.J. Pitcher & R.T. Duggan (ed.) Control Processes in Fish Physiology, John Wiley & Sons, New York.

    Google Scholar 

  • Johnston, I.A, 1981. Structure and function of fish muscles. symp. Zool. Soc. London 48: 71–113.

    Google Scholar 

  • Johnston, I.A. & J.D. Altringham. 1991. Movement in water: constraints and adaptations. pp.249–268. In: P.W. Hochachka & T.P. Mommsen (ed.) Biochemistry and Molecular Biology of Fishes, Vol. 1, Elsevier, New York.

  • Johnston, I.A. & R. Brill. 1984. Thermal dependence of contractile properties of single skinned muscle fibres from Antarctic and various warm water marine fishes including skipjack tuna (Katsuwonus pelamis) and kawakawa (Euthynnus affinis). J. Comp. Physiol. B 155: 63–70.

    Google Scholar 

  • Johnston, I.A., W. Davison & G. Goldspink. 1977. Energy metabolism of carp swimming muscles. J. Comp. Physiol. 114: 203–216.

    Google Scholar 

  • Johnston, I.A., N. Frearson & G. Goldspink. 1972. Myofibrillar ATPase activities of red and white myotomal muscles of marine fish. Experientia 28: 713–714.

    Google Scholar 

  • Johnston, I.A. & T.W. Moon. 1980. Exercise training in skeletal muscle of brook trout (Salvelinus fontinalis). J. Exp. Biol. 87: 177–194.

    Google Scholar 

  • Johnston, I.A. & T.W. Moon. 1981. Fine structure and metabolism of multiply innervated fast muscle fibres in teleost fish. Cell Tiss. Res. 219: 93–109.

    Google Scholar 

  • Johnston, I.A. & J. Salamonski. 1984. Power output and forcevelocity relationship of red and white muscle fibres from the Pacific blue marlin (Makaira nigricans). J. Exp. Biol. 111: 171–177.

    Google Scholar 

  • Johnston, I.A. & B. Tota. 1974. Myofibrillar ATPase in the various red and white muscles of the tunny (Thunnus thynnus L.) and the tub gumard (Trigla lucerna L.). Comp. Biochem. Physiol. 49B: 367–373.

    Google Scholar 

  • Jorgensen, J.B. & T. Mustafa. 1980. The effect of hypoxia on carbohydrate metabolism in flounder (Platichthys flesus L.) — II. High energy phosphate compounds and the role of glycolytic and gluconeogenetic enzymes. Comp. Biochem. Physiol. 67B: 249–256.

    Google Scholar 

  • Josephson, R.K. 1985. Mechanical power output from straited muscle during cyclic contraction. J. Exp. Biol. 114: 493–512.

    Google Scholar 

  • Klawe, W.L. I. Barrett & B.M.H. Klawe. 1963. Haemogobin content of the blood of six species of scombroid fishes. Nature 198: 96.

    Google Scholar 

  • Knox, D., M.J. Walton & C.B. Cowey. 1980. Distribution of enzymes of glycolysis and gluconeogenesis in fish tissues. Mar. Biol. 56: 7–10.

    Google Scholar 

  • Lai, N.C., J.B. Graham, W.R. Lowell & R.M. Laurs. 1987. Pericardial and vascular pressures and blood flow in the albacore tuna, Thunnus alalunga. Exp. Biol. 46: 187–192.

    Google Scholar 

  • Magnuson, J.J. 1969. Digestion and food consumption by skipjack tuna (Katsuwonus pelamis). Trans. Amer. Fish. Soc. 98: 379–392.

    Google Scholar 

  • Magnuson, J.J. 1973. Comparative study of adaptations for continuous swimming and hydrostatic equilibrium of scombroid and xiphoid fishes. U.S. Fish. Bull. 71: 337–356.

    Google Scholar 

  • Magnuson, J.J. 1978. Locomotion by scombrid fishes. pp. 239–313. In: W.S. Hoar & D.J. Randall (ed.) Fish Physiology Vol. 7, Academic Press, New York.

  • Mathieu-Costello, O., P.J. Agey, R.B. Logemann, R.W. Brill & P.W. Hochachka. 1992. Capillary-fiber geometrical relationships in tuna red muscle. Can. J. Zool. 70: 1218–1229.

    Google Scholar 

  • McLaughlin, R.L. & D.L. Kramer. 1991. The association between amount of red muscle and mobility in fishes: a statistical evaluation. Env. Biol. Fish. 30: 369–378.

    Google Scholar 

  • Milligan, C.L. & C.M. Wood 1986. Tissue intracellular acid-base status and the fate of lactate after exhaustive exercise in the rainbow trout. J. Exp. Biol. 135 119–131.

    Google Scholar 

  • Mommsen, T.P. 1984. Metabolism of the fish gill. pp. 203–238. In: W.S. Hoar & D.J. Randall (ed.) Fish Physiology, Vol. 10, Academic Press, New York.

  • Moon, T.W. & I.A. Johnston. 1980. Starvation and the activities of glycolytic and gluconeogenic enzymes in skeletal muscle and liver of the plaice, Pleuronectes platessa. J. Comp. Physiol. 136: 31–38.

    Google Scholar 

  • Mosse, P.R.L. 1979. Capillary distribution and metabolic histochemistry of the lateral propulsive musculature of pelagic teleost fish. Cell Tiss. Res. 203: 141–160.

    Google Scholar 

  • Moyes, C.D., O.A. Mathieu-Costello, R.W. Brill & P.W. Hochachka. 1992. Mitochondrial metabolism of caidiac and skeletal muscles from a fast (Katsuwonus pelamis) and a slow (Cyprinus carpio) fish. Can. J. Zool. 70: 1246–1253.

    Google Scholar 

  • Okuma, E. & H. Abe. 1992. Major buffering constituents in animal muscle. Comp. Biochem. Physiol. 102A: 37–41.

    Google Scholar 

  • Olson, R.J. & C.H. Boggs. 1986. Apex predation by yellowfin tuna (Thunnus albacares): independent estimates from gastric evacuation and stomach contents, bioenergetics, and cesium concentrations. Can. J. Fish. Aquatic Sci. 43: 1760–1775.

    Google Scholar 

  • Olson, R.J. & V.P. Scholey. 1990. Captive tunas in a tropical marine research laboratory: growth of late-larval and early-juvenile black skipjack Euthynnus lineatus. U.S. Fish. Bull. 88: 821–828.

    Google Scholar 

  • Pagnotta, A. & C.L. Milligan. 1991. The role of blood glucose in the restoration of muscle glycogen during recovery from exchaustive excercise in rainbow trout (Oncorhynchus mykiss) and winter flounder (Pseudopleuronectes americanus). J. Exp. Biol. 161: 489–508.

    Google Scholar 

  • Perry S.F, C. Daxboeck, B. Emmett, P.W. Hochachka & R.W. Brill. 1985. Effects of exhausting exercise on acid-base regulation in skipjack tuna (Katsuwonus pelamis) blood. Physiol. Zool. 58: 421–429.

    Google Scholar 

  • Poupa, O. & L. Lindstrom. 1983. Comparative and scaling aspects of heart and body weights with reference to blood supply of cardiac fibers. Comp. Biochem. Physiol. 76A: 413–421.

    Google Scholar 

  • Rome, L.C., R.P. Funke, R.M. Alexander, G. Lutz, H. Aldridge, F. Scott & M. Freadman. 1988. Why animals have different muscle fibre types. Nature 335: 824–827.

    Google Scholar 

  • Rome, L.C. & D. Swank. 1992. The influence of temperature on power output of scup red muscle during cyclical length changes. J. Exp. Biol. 171: 261–281.

    Google Scholar 

  • Rosser, B.W.C., B.J. Norris & P.M. Nemeth. 1992. Metabolic capacity of individual muscle fibers from different anatomic locations. J. Histochem. Cytochem. 40: 819–825.

    Google Scholar 

  • Santer, R.M., M. Greer Walker, L. Emerson & P.R. Witthames. 1983. On the morphology of the heart ventricle in marine teleost fish (Teleostei). Comp. Biochem. Physiol. 76A: 453–457.

    Google Scholar 

  • Schaefer, K.M. 1984. Swimming performance, body temperatures and gastic evacuation times of the black skipjack Euthynnus lineatus. Copeia 1984: 1000–1005.

    Google Scholar 

  • Schaefer, K.M. 1985. Body temperatures in troll caught frigate tuna, Auxis thazard. Copeia 1984: 231–233.

    Google Scholar 

  • Schulte, P.M., C.D. Moyes & P.W. Hochachka. 1992. Integrating metabolic pathways in post-exercise recovery of white muscle. J. Exp. Biol. 166: 181–195.

    Google Scholar 

  • Sharp, G.D. & R.C. Dotson. 1977. Energy for migration in albacore, Thunnus alalunga. U.S. Fish. Bull. 75: 447–450.

    Google Scholar 

  • Sharp, G.D. & S.W. Pirages. 1978. The distribution of red and white swimming muscles, their biochemistry, and the biochemical phylogeny of selected scombroid fishes. pp. 41–78. In: G.D. Sharp & A.E. Dizon (ed.) The distribution of red and white swimming muscles, their biochemistry, and the biochemical phylogeny of selected scombroid fishes, Academic Press, New York.

    Google Scholar 

  • Sheridan, M.A. 1988. Lipid dynamics in fish: aspects of absorption, transportation, deposition, and mobilization. Comp. Biochem. Physiol. 90B: 679–690.

    Google Scholar 

  • Sidell, B.D., W.R. Driedzic, D.B. Stowe & I.A. Johnston. 1987. Biochemical correlates of power development and metabolic fuel preferenda in fish hearts. Physiol. Zool. 60: 221–232.

    Google Scholar 

  • Siebenaller, J.F. & G.N. Somero. 1982. The maintenance of different enzyme activity levels in congeneric fishes living at different depths. Physiol. Zool. 55: 171–179.

    Google Scholar 

  • Siebenaller, J.F, G.N. Somero & R.L. Haedrich. 1982. Biochemical characteristics of macrourid fishes differing in their depth of distribution. Biol. Bull. 163: 240–249.

    Google Scholar 

  • Somero, G.N. & J.J. Childress. 1980. A violation of the metabolism-size scaling paradigm: activities of glycolytic enzymes in muscle increase in large-size fishes. Physiol. Zool. 53: 322–337.

    Google Scholar 

  • Steven, E.D. & F.G. Carey. 1981. One why of the warmth of warm-bodied fish. Amer. J. Physiol, 240: R151–R155.

    Google Scholar 

  • Stevens, E.D. & A.E. Dizon. 1982. Energetics of locomotion in warm-bodied fish. Ann. Rev. Physiol. 44: 121–131.

    Google Scholar 

  • Stevens, E.D. & J.M. McLeese. 1984. Why bluefin tuna have warm tummies: temperature effect on trypsin and chymotrypsin. Amer. J. Physiol. 246: R487–R494.

    Google Scholar 

  • Suarez, R.K., M.D. Mallet, C. Daxboeck & P.W. Hochachka. 1986. Enzymes of energy metabolism and gluconeogenesis in the Pacific blue marlin Makaira nigricans. Can. J. Zool. 64: 694–697.

    Google Scholar 

  • Suarez, R.K. & T.P. Mommsen. 1987. Gluconeogenesis in teleost fishes. Can. J. Zool. 65: 1869–1882.

    Google Scholar 

  • Sullivan, K.M. & G.N. Somero. 1980. Enzyme activities of fish skeletal muscle and brain as influenced by depth of occurrence and habits of feeding and locomotion. Mar. Biol. 60: 91–99.

    Google Scholar 

  • Sund, P.N., M. Blackburn & F. Williams. 1981. Tunas and their environment in the Pacific Ocean: a review. Oceanogr. Mar. Biol. Annu. Rev. 19: 443–512.

    Google Scholar 

  • Swift, D.J. 1982. The blood haemoglobin concentration of the Atlantic mackerel (Scomber scombrus L.). Comp. Biochem. Physiol. 73A: 229–232.

    Google Scholar 

  • Tang, J. & C.S. Wardle. 1992. Power output of two sizes of Atlantic salmon (Salmo salar) at their maximum sustained speeds. J. Exp. Biol. 166: 33–46.

    Google Scholar 

  • Torres, J.J. & G.N. Somero. 1988. Metabolism, enzymic activities and cold adaptation in Antarctic mesopelagic fishes. Mar. Biol. 98: 169–180.

    Google Scholar 

  • Tota, B. 1983. Vascular and metabolic zonation in the ventricular myocardium of mammals and fishes. Comp. Biochem. Physiol. 76A: 423–437.

    Google Scholar 

  • Tsukamoto, K. 1984. Contribution of the red and white muscles to the power output required for swimming by the yellowtail. Bull. Jap. Soc. Scient. Fish. 50: 2031–2042.

    Google Scholar 

  • Tullis, A., B.A. Block & B.D. Sidell. 1991. Activities of key metabolic enzymes in the heater organs of scombroid fishes. J. Exp. Biol. 161: 383–403.

    Google Scholar 

  • Wainwright, S.A. 1983. To bend a fish. pp. 68–91. In: P.W. Webb & D. Weighs (ed.) Fish Biomechanis, Praeger Publishers, New York.

    Google Scholar 

  • Walker, M.M., J.L. Kirschvink & S.R. Chang. 1984. A candidate magnetic sense organ in the yellowfin tuna, Thunnus albacares. Science 224: 751–753.

    Google Scholar 

  • Webb, P.W. 1975. Hydrodynamics and energetics of fish propulsion. Bull. Fish. Res. Board Can. 190: 1–158.

    Google Scholar 

  • Webb, P.W. 1984. Form and function in fish swimming. Scientific Amer. 251 (1): 72–82.

    Google Scholar 

  • Webb, P.W. & D. Weihs (ed.) 1983. Fish biomechanics. Praeger Publishers, New York. 398 pp.

  • Weber, J., R.W. Brill & P.W. Hochachka. 1986. Mammalian metabolite flux rates in a teleost: lactate and glucose turnover in tuna. Amer. J. Physiol. 250: R452–R458.

    Google Scholar 

  • Wells, R.M.G. & P.S. Davie. 1985. Oxygen binding by the blood and hematological effects of capture stress in two big gamefish: mako shark and striped marlin. Comp. Biochem. Physiol. 81A: 643–646.

    Google Scholar 

  • White, F.C., R. Kelly, S. Kemper, P.T. Schumacker, K.R. Gallagher & R.M. Laurs. 1988. Organ blood flow haemodynamics and metabolism of the albacore tuna Thunnus alalunga (Bonnaterre). Exp. Biol. 47: 161–169.

    Google Scholar 

  • White, E.N. & G.N. Somero. 1982. Acid-base regulation and phospholipid adaptations to temperature: time courses and physiological significance of modifying the milieu for protein function. Physiol. Rev. 62: 40–90.

    Google Scholar 

  • Wittenberg, J.B. 1970. Myoglobinvfacilitated oxygen diffusion: role of myoglobin in oxygen entry into muscle. Physiol. Rev. 50: 559–636.

    Google Scholar 

  • Wood, C.M. 1991. Acid-base and ion balance, metabolism, and their interactions, after exhaustive exercise in fish. J. Exp. Biol. 160: 285–308.

    Google Scholar 

  • Zammit, V.A. & E.A. Newsholme. 1979. Activities of enzymes of fat and ketone-body metabolism and effects of starvation on blood concentrations of glucose and fat fuels in teleost and elasmobranch fish. Biochem. J. 184: 313–322.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Paper from the International Union of Biological Societies symposium ‘The biology of tunas and billfishes: an examination of life on the knife edge’, organized by Richard W. Brill and Kim N. Holland.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dickson, K.A. Unique adaptations of the metabolic biochemistry of tunas and billfishes for life in the pelagic environment. Environ Biol Fish 42, 65–97 (1995). https://doi.org/10.1007/BF00002352

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00002352

Key words

Navigation